Evaluate
\frac{241}{4000}=0.06025
Factor
\frac{241}{2 ^ {5} \cdot 5 ^ {3}} = 0.06025
Share
Copied to clipboard
\frac{240+1}{40^{2}+60\times 40}
Multiply 6 and 40 to get 240.
\frac{241}{40^{2}+60\times 40}
Add 240 and 1 to get 241.
\frac{241}{1600+60\times 40}
Calculate 40 to the power of 2 and get 1600.
\frac{241}{1600+2400}
Multiply 60 and 40 to get 2400.
\frac{241}{4000}
Add 1600 and 2400 to get 4000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}