Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and 2+x is \left(x-2\right)\left(x+2\right). Multiply \frac{6}{x-2} times \frac{x+2}{x+2}. Multiply \frac{3}{2+x} times \frac{x-2}{x-2}.
\frac{6\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Since \frac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{6x+12+3x-6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Do the multiplications in 6\left(x+2\right)+3\left(x-2\right).
\frac{9x+6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Combine like terms in 6x+12+3x-6.
\frac{9x+6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{\left(x-2\right)\left(x+3\right)}
Factor x^{2}+x-6.
\frac{\left(9x+6\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}-\frac{\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)\left(x+3\right) is \left(x-2\right)\left(x+2\right)\left(x+3\right). Multiply \frac{9x+6}{\left(x-2\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{9x-5}{\left(x-2\right)\left(x+3\right)} times \frac{x+2}{x+2}.
\frac{\left(9x+6\right)\left(x+3\right)-\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(9x+6\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{2}+27x+6x+18-9x^{2}-18x+5x+10}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(9x+6\right)\left(x+3\right)-\left(9x-5\right)\left(x+2\right).
\frac{20x+28}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 9x^{2}+27x+6x+18-9x^{2}-18x+5x+10.
\frac{20x+28}{x^{3}+3x^{2}-4x-12}
Expand \left(x-2\right)\left(x+2\right)\left(x+3\right).
\frac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and 2+x is \left(x-2\right)\left(x+2\right). Multiply \frac{6}{x-2} times \frac{x+2}{x+2}. Multiply \frac{3}{2+x} times \frac{x-2}{x-2}.
\frac{6\left(x+2\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Since \frac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{6x+12+3x-6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Do the multiplications in 6\left(x+2\right)+3\left(x-2\right).
\frac{9x+6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{x^{2}+x-6}
Combine like terms in 6x+12+3x-6.
\frac{9x+6}{\left(x-2\right)\left(x+2\right)}-\frac{9x-5}{\left(x-2\right)\left(x+3\right)}
Factor x^{2}+x-6.
\frac{\left(9x+6\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}-\frac{\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and \left(x-2\right)\left(x+3\right) is \left(x-2\right)\left(x+2\right)\left(x+3\right). Multiply \frac{9x+6}{\left(x-2\right)\left(x+2\right)} times \frac{x+3}{x+3}. Multiply \frac{9x-5}{\left(x-2\right)\left(x+3\right)} times \frac{x+2}{x+2}.
\frac{\left(9x+6\right)\left(x+3\right)-\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Since \frac{\left(9x+6\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} and \frac{\left(9x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{2}+27x+6x+18-9x^{2}-18x+5x+10}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Do the multiplications in \left(9x+6\right)\left(x+3\right)-\left(9x-5\right)\left(x+2\right).
\frac{20x+28}{\left(x-2\right)\left(x+2\right)\left(x+3\right)}
Combine like terms in 9x^{2}+27x+6x+18-9x^{2}-18x+5x+10.
\frac{20x+28}{x^{3}+3x^{2}-4x-12}
Expand \left(x-2\right)\left(x+2\right)\left(x+3\right).