Solve for x
x = \frac{15 \sqrt{1601} + 615}{2} \approx 607.593735356
x = \frac{615 - 15 \sqrt{1601}}{2} \approx 7.406264644
Graph
Share
Copied to clipboard
\left(300x-4500\right)\times 6+300x\times 6=x\left(x-15\right)\times 6
Variable x cannot be equal to any of the values 0,15 since division by zero is not defined. Multiply both sides of the equation by 300x\left(x-15\right), the least common multiple of x,x-15,300.
1800x-27000+300x\times 6=x\left(x-15\right)\times 6
Use the distributive property to multiply 300x-4500 by 6.
1800x-27000+1800x=x\left(x-15\right)\times 6
Multiply 300 and 6 to get 1800.
3600x-27000=x\left(x-15\right)\times 6
Combine 1800x and 1800x to get 3600x.
3600x-27000=\left(x^{2}-15x\right)\times 6
Use the distributive property to multiply x by x-15.
3600x-27000=6x^{2}-90x
Use the distributive property to multiply x^{2}-15x by 6.
3600x-27000-6x^{2}=-90x
Subtract 6x^{2} from both sides.
3600x-27000-6x^{2}+90x=0
Add 90x to both sides.
3690x-27000-6x^{2}=0
Combine 3600x and 90x to get 3690x.
-6x^{2}+3690x-27000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3690±\sqrt{3690^{2}-4\left(-6\right)\left(-27000\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 3690 for b, and -27000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3690±\sqrt{13616100-4\left(-6\right)\left(-27000\right)}}{2\left(-6\right)}
Square 3690.
x=\frac{-3690±\sqrt{13616100+24\left(-27000\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-3690±\sqrt{13616100-648000}}{2\left(-6\right)}
Multiply 24 times -27000.
x=\frac{-3690±\sqrt{12968100}}{2\left(-6\right)}
Add 13616100 to -648000.
x=\frac{-3690±90\sqrt{1601}}{2\left(-6\right)}
Take the square root of 12968100.
x=\frac{-3690±90\sqrt{1601}}{-12}
Multiply 2 times -6.
x=\frac{90\sqrt{1601}-3690}{-12}
Now solve the equation x=\frac{-3690±90\sqrt{1601}}{-12} when ± is plus. Add -3690 to 90\sqrt{1601}.
x=\frac{615-15\sqrt{1601}}{2}
Divide -3690+90\sqrt{1601} by -12.
x=\frac{-90\sqrt{1601}-3690}{-12}
Now solve the equation x=\frac{-3690±90\sqrt{1601}}{-12} when ± is minus. Subtract 90\sqrt{1601} from -3690.
x=\frac{15\sqrt{1601}+615}{2}
Divide -3690-90\sqrt{1601} by -12.
x=\frac{615-15\sqrt{1601}}{2} x=\frac{15\sqrt{1601}+615}{2}
The equation is now solved.
\left(300x-4500\right)\times 6+300x\times 6=x\left(x-15\right)\times 6
Variable x cannot be equal to any of the values 0,15 since division by zero is not defined. Multiply both sides of the equation by 300x\left(x-15\right), the least common multiple of x,x-15,300.
1800x-27000+300x\times 6=x\left(x-15\right)\times 6
Use the distributive property to multiply 300x-4500 by 6.
1800x-27000+1800x=x\left(x-15\right)\times 6
Multiply 300 and 6 to get 1800.
3600x-27000=x\left(x-15\right)\times 6
Combine 1800x and 1800x to get 3600x.
3600x-27000=\left(x^{2}-15x\right)\times 6
Use the distributive property to multiply x by x-15.
3600x-27000=6x^{2}-90x
Use the distributive property to multiply x^{2}-15x by 6.
3600x-27000-6x^{2}=-90x
Subtract 6x^{2} from both sides.
3600x-27000-6x^{2}+90x=0
Add 90x to both sides.
3690x-27000-6x^{2}=0
Combine 3600x and 90x to get 3690x.
3690x-6x^{2}=27000
Add 27000 to both sides. Anything plus zero gives itself.
-6x^{2}+3690x=27000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+3690x}{-6}=\frac{27000}{-6}
Divide both sides by -6.
x^{2}+\frac{3690}{-6}x=\frac{27000}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-615x=\frac{27000}{-6}
Divide 3690 by -6.
x^{2}-615x=-4500
Divide 27000 by -6.
x^{2}-615x+\left(-\frac{615}{2}\right)^{2}=-4500+\left(-\frac{615}{2}\right)^{2}
Divide -615, the coefficient of the x term, by 2 to get -\frac{615}{2}. Then add the square of -\frac{615}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-615x+\frac{378225}{4}=-4500+\frac{378225}{4}
Square -\frac{615}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-615x+\frac{378225}{4}=\frac{360225}{4}
Add -4500 to \frac{378225}{4}.
\left(x-\frac{615}{2}\right)^{2}=\frac{360225}{4}
Factor x^{2}-615x+\frac{378225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{615}{2}\right)^{2}}=\sqrt{\frac{360225}{4}}
Take the square root of both sides of the equation.
x-\frac{615}{2}=\frac{15\sqrt{1601}}{2} x-\frac{615}{2}=-\frac{15\sqrt{1601}}{2}
Simplify.
x=\frac{15\sqrt{1601}+615}{2} x=\frac{615-15\sqrt{1601}}{2}
Add \frac{615}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}