Solve for f
f=\frac{2y\left(x+9\right)}{3x}
x\neq 0\text{ and }y\neq 0
Solve for x
x=-\frac{18y}{2y-3f}
y\neq 0\text{ and }y\neq \frac{3f}{2}
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 6 } { x } + \frac { 2 } { 3 } = \frac { 1 } { y } f
Share
Copied to clipboard
3y\times 6+3xy\times \frac{2}{3}=3x\times 1f
Multiply both sides of the equation by 3xy, the least common multiple of x,3,y.
18y+3xy\times \frac{2}{3}=3x\times 1f
Multiply 3 and 6 to get 18.
18y+2xy=3x\times 1f
Multiply 3 and \frac{2}{3} to get 2.
18y+2xy=3xf
Multiply 3 and 1 to get 3.
3xf=18y+2xy
Swap sides so that all variable terms are on the left hand side.
3xf=2xy+18y
The equation is in standard form.
\frac{3xf}{3x}=\frac{2y\left(x+9\right)}{3x}
Divide both sides by 3x.
f=\frac{2y\left(x+9\right)}{3x}
Dividing by 3x undoes the multiplication by 3x.
f=\frac{2y}{3}+\frac{6y}{x}
Divide 2y\left(9+x\right) by 3x.
3y\times 6+3xy\times \frac{2}{3}=3x\times 1f
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3xy, the least common multiple of x,3,y.
18y+3xy\times \frac{2}{3}=3x\times 1f
Multiply 3 and 6 to get 18.
18y+2xy=3x\times 1f
Multiply 3 and \frac{2}{3} to get 2.
18y+2xy=3xf
Multiply 3 and 1 to get 3.
18y+2xy-3xf=0
Subtract 3xf from both sides.
2xy-3xf=-18y
Subtract 18y from both sides. Anything subtracted from zero gives its negation.
\left(2y-3f\right)x=-18y
Combine all terms containing x.
\frac{\left(2y-3f\right)x}{2y-3f}=-\frac{18y}{2y-3f}
Divide both sides by 2y-3f.
x=-\frac{18y}{2y-3f}
Dividing by 2y-3f undoes the multiplication by 2y-3f.
x=-\frac{18y}{2y-3f}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}