Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6}{x\left(x-2\right)}-\frac{8}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-2x. Factor x^{2}-4.
\frac{6\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{8x}{x\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and \left(x-2\right)\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{6}{x\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{8}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}.
\frac{6\left(x+2\right)-8x}{x\left(x-2\right)\left(x+2\right)}
Since \frac{6\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} and \frac{8x}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x+12-8x}{x\left(x-2\right)\left(x+2\right)}
Do the multiplications in 6\left(x+2\right)-8x.
\frac{-2x+12}{x\left(x-2\right)\left(x+2\right)}
Combine like terms in 6x+12-8x.
\frac{-2x+12}{x^{3}-4x}
Expand x\left(x-2\right)\left(x+2\right).