Solve for x
x=-33
Graph
Share
Copied to clipboard
6=\left(x-10\right)\times 2-\left(x+10\right)\times 4
Variable x cannot be equal to any of the values -10,10 since division by zero is not defined. Multiply both sides of the equation by \left(x-10\right)\left(x+10\right), the least common multiple of x^{2}-100,x+10,x-10.
6=2x-20-\left(x+10\right)\times 4
Use the distributive property to multiply x-10 by 2.
6=2x-20-\left(4x+40\right)
Use the distributive property to multiply x+10 by 4.
6=2x-20-4x-40
To find the opposite of 4x+40, find the opposite of each term.
6=-2x-20-40
Combine 2x and -4x to get -2x.
6=-2x-60
Subtract 40 from -20 to get -60.
-2x-60=6
Swap sides so that all variable terms are on the left hand side.
-2x=6+60
Add 60 to both sides.
-2x=66
Add 6 and 60 to get 66.
x=\frac{66}{-2}
Divide both sides by -2.
x=-33
Divide 66 by -2 to get -33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}