Solve for x (complex solution)
x=\sqrt{6}-2\approx 0.449489743
x=-\left(\sqrt{6}+2\right)\approx -4.449489743
Solve for x
x=\sqrt{6}-2\approx 0.449489743
x=-\sqrt{6}-2\approx -4.449489743
Graph
Share
Copied to clipboard
6-x\times 12=3x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x^{2},x.
6-x\times 12-3x^{2}=0
Subtract 3x^{2} from both sides.
6-12x-3x^{2}=0
Multiply -1 and 12 to get -12.
-3x^{2}-12x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -12 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
Multiply 12 times 6.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
Add 144 to 72.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
Take the square root of 216.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
The opposite of -12 is 12.
x=\frac{12±6\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{6}+12}{-6}
Now solve the equation x=\frac{12±6\sqrt{6}}{-6} when ± is plus. Add 12 to 6\sqrt{6}.
x=-\left(\sqrt{6}+2\right)
Divide 12+6\sqrt{6} by -6.
x=\frac{12-6\sqrt{6}}{-6}
Now solve the equation x=\frac{12±6\sqrt{6}}{-6} when ± is minus. Subtract 6\sqrt{6} from 12.
x=\sqrt{6}-2
Divide 12-6\sqrt{6} by -6.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
The equation is now solved.
6-x\times 12=3x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x^{2},x.
6-x\times 12-3x^{2}=0
Subtract 3x^{2} from both sides.
-x\times 12-3x^{2}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
-12x-3x^{2}=-6
Multiply -1 and 12 to get -12.
-3x^{2}-12x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+4x=-\frac{6}{-3}
Divide -12 by -3.
x^{2}+4x=2
Divide -6 by -3.
x^{2}+4x+2^{2}=2+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=2+4
Square 2.
x^{2}+4x+4=6
Add 2 to 4.
\left(x+2\right)^{2}=6
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x+2=\sqrt{6} x+2=-\sqrt{6}
Simplify.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Subtract 2 from both sides of the equation.
6-x\times 12=3x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x^{2},x.
6-x\times 12-3x^{2}=0
Subtract 3x^{2} from both sides.
6-12x-3x^{2}=0
Multiply -1 and 12 to get -12.
-3x^{2}-12x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -12 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 6}}{2\left(-3\right)}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 6}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-12\right)±\sqrt{144+72}}{2\left(-3\right)}
Multiply 12 times 6.
x=\frac{-\left(-12\right)±\sqrt{216}}{2\left(-3\right)}
Add 144 to 72.
x=\frac{-\left(-12\right)±6\sqrt{6}}{2\left(-3\right)}
Take the square root of 216.
x=\frac{12±6\sqrt{6}}{2\left(-3\right)}
The opposite of -12 is 12.
x=\frac{12±6\sqrt{6}}{-6}
Multiply 2 times -3.
x=\frac{6\sqrt{6}+12}{-6}
Now solve the equation x=\frac{12±6\sqrt{6}}{-6} when ± is plus. Add 12 to 6\sqrt{6}.
x=-\left(\sqrt{6}+2\right)
Divide 12+6\sqrt{6} by -6.
x=\frac{12-6\sqrt{6}}{-6}
Now solve the equation x=\frac{12±6\sqrt{6}}{-6} when ± is minus. Subtract 6\sqrt{6} from 12.
x=\sqrt{6}-2
Divide 12-6\sqrt{6} by -6.
x=-\left(\sqrt{6}+2\right) x=\sqrt{6}-2
The equation is now solved.
6-x\times 12=3x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}, the least common multiple of x^{2},x.
6-x\times 12-3x^{2}=0
Subtract 3x^{2} from both sides.
-x\times 12-3x^{2}=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
-12x-3x^{2}=-6
Multiply -1 and 12 to get -12.
-3x^{2}-12x=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-12x}{-3}=-\frac{6}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{12}{-3}\right)x=-\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+4x=-\frac{6}{-3}
Divide -12 by -3.
x^{2}+4x=2
Divide -6 by -3.
x^{2}+4x+2^{2}=2+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=2+4
Square 2.
x^{2}+4x+4=6
Add 2 to 4.
\left(x+2\right)^{2}=6
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x+2=\sqrt{6} x+2=-\sqrt{6}
Simplify.
x=\sqrt{6}-2 x=-\sqrt{6}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}