Solve for x
x=\frac{8\sqrt{3}-6}{13}\approx 0.604338959
x=\frac{-8\sqrt{3}-6}{13}\approx -1.527415882
Graph
Share
Copied to clipboard
\left(x-2\right)^{2}\times 6=x^{2}\times 32
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 6=x^{2}\times 32
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
6x^{2}-24x+24=x^{2}\times 32
Use the distributive property to multiply x^{2}-4x+4 by 6.
6x^{2}-24x+24-x^{2}\times 32=0
Subtract x^{2}\times 32 from both sides.
-26x^{2}-24x+24=0
Combine 6x^{2} and -x^{2}\times 32 to get -26x^{2}.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-26\right)\times 24}}{2\left(-26\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -26 for a, -24 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-26\right)\times 24}}{2\left(-26\right)}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576+104\times 24}}{2\left(-26\right)}
Multiply -4 times -26.
x=\frac{-\left(-24\right)±\sqrt{576+2496}}{2\left(-26\right)}
Multiply 104 times 24.
x=\frac{-\left(-24\right)±\sqrt{3072}}{2\left(-26\right)}
Add 576 to 2496.
x=\frac{-\left(-24\right)±32\sqrt{3}}{2\left(-26\right)}
Take the square root of 3072.
x=\frac{24±32\sqrt{3}}{2\left(-26\right)}
The opposite of -24 is 24.
x=\frac{24±32\sqrt{3}}{-52}
Multiply 2 times -26.
x=\frac{32\sqrt{3}+24}{-52}
Now solve the equation x=\frac{24±32\sqrt{3}}{-52} when ± is plus. Add 24 to 32\sqrt{3}.
x=\frac{-8\sqrt{3}-6}{13}
Divide 24+32\sqrt{3} by -52.
x=\frac{24-32\sqrt{3}}{-52}
Now solve the equation x=\frac{24±32\sqrt{3}}{-52} when ± is minus. Subtract 32\sqrt{3} from 24.
x=\frac{8\sqrt{3}-6}{13}
Divide 24-32\sqrt{3} by -52.
x=\frac{-8\sqrt{3}-6}{13} x=\frac{8\sqrt{3}-6}{13}
The equation is now solved.
\left(x-2\right)^{2}\times 6=x^{2}\times 32
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x^{2}\left(x-2\right)^{2}, the least common multiple of x^{2},\left(2-x\right)^{2}.
\left(x^{2}-4x+4\right)\times 6=x^{2}\times 32
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
6x^{2}-24x+24=x^{2}\times 32
Use the distributive property to multiply x^{2}-4x+4 by 6.
6x^{2}-24x+24-x^{2}\times 32=0
Subtract x^{2}\times 32 from both sides.
-26x^{2}-24x+24=0
Combine 6x^{2} and -x^{2}\times 32 to get -26x^{2}.
-26x^{2}-24x=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
\frac{-26x^{2}-24x}{-26}=-\frac{24}{-26}
Divide both sides by -26.
x^{2}+\left(-\frac{24}{-26}\right)x=-\frac{24}{-26}
Dividing by -26 undoes the multiplication by -26.
x^{2}+\frac{12}{13}x=-\frac{24}{-26}
Reduce the fraction \frac{-24}{-26} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{12}{13}x=\frac{12}{13}
Reduce the fraction \frac{-24}{-26} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{12}{13}x+\left(\frac{6}{13}\right)^{2}=\frac{12}{13}+\left(\frac{6}{13}\right)^{2}
Divide \frac{12}{13}, the coefficient of the x term, by 2 to get \frac{6}{13}. Then add the square of \frac{6}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{12}{13}+\frac{36}{169}
Square \frac{6}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{13}x+\frac{36}{169}=\frac{192}{169}
Add \frac{12}{13} to \frac{36}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{13}\right)^{2}=\frac{192}{169}
Factor x^{2}+\frac{12}{13}x+\frac{36}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{13}\right)^{2}}=\sqrt{\frac{192}{169}}
Take the square root of both sides of the equation.
x+\frac{6}{13}=\frac{8\sqrt{3}}{13} x+\frac{6}{13}=-\frac{8\sqrt{3}}{13}
Simplify.
x=\frac{8\sqrt{3}-6}{13} x=\frac{-8\sqrt{3}-6}{13}
Subtract \frac{6}{13} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}