Evaluate
\frac{12v+1}{v^{2}-16}
Expand
\frac{12v+1}{v^{2}-16}
Share
Copied to clipboard
\frac{6}{v+4}+\frac{v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Factor v^{2}-16.
\frac{6\left(v-4\right)}{\left(v-4\right)\left(v+4\right)}+\frac{v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+4 and \left(v-4\right)\left(v+4\right) is \left(v-4\right)\left(v+4\right). Multiply \frac{6}{v+4} times \frac{v-4}{v-4}.
\frac{6\left(v-4\right)+v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Since \frac{6\left(v-4\right)}{\left(v-4\right)\left(v+4\right)} and \frac{v+5}{\left(v-4\right)\left(v+4\right)} have the same denominator, add them by adding their numerators.
\frac{6v-24+v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Do the multiplications in 6\left(v-4\right)+v+5.
\frac{7v-19}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Combine like terms in 6v-24+v+5.
\frac{7v-19}{\left(v-4\right)\left(v+4\right)}+\frac{5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-4\right)\left(v+4\right) and v-4 is \left(v-4\right)\left(v+4\right). Multiply \frac{5}{v-4} times \frac{v+4}{v+4}.
\frac{7v-19+5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)}
Since \frac{7v-19}{\left(v-4\right)\left(v+4\right)} and \frac{5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)} have the same denominator, add them by adding their numerators.
\frac{7v-19+5v+20}{\left(v-4\right)\left(v+4\right)}
Do the multiplications in 7v-19+5\left(v+4\right).
\frac{12v+1}{\left(v-4\right)\left(v+4\right)}
Combine like terms in 7v-19+5v+20.
\frac{12v+1}{v^{2}-16}
Expand \left(v-4\right)\left(v+4\right).
\frac{6}{v+4}+\frac{v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Factor v^{2}-16.
\frac{6\left(v-4\right)}{\left(v-4\right)\left(v+4\right)}+\frac{v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of v+4 and \left(v-4\right)\left(v+4\right) is \left(v-4\right)\left(v+4\right). Multiply \frac{6}{v+4} times \frac{v-4}{v-4}.
\frac{6\left(v-4\right)+v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Since \frac{6\left(v-4\right)}{\left(v-4\right)\left(v+4\right)} and \frac{v+5}{\left(v-4\right)\left(v+4\right)} have the same denominator, add them by adding their numerators.
\frac{6v-24+v+5}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Do the multiplications in 6\left(v-4\right)+v+5.
\frac{7v-19}{\left(v-4\right)\left(v+4\right)}+\frac{5}{v-4}
Combine like terms in 6v-24+v+5.
\frac{7v-19}{\left(v-4\right)\left(v+4\right)}+\frac{5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(v-4\right)\left(v+4\right) and v-4 is \left(v-4\right)\left(v+4\right). Multiply \frac{5}{v-4} times \frac{v+4}{v+4}.
\frac{7v-19+5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)}
Since \frac{7v-19}{\left(v-4\right)\left(v+4\right)} and \frac{5\left(v+4\right)}{\left(v-4\right)\left(v+4\right)} have the same denominator, add them by adding their numerators.
\frac{7v-19+5v+20}{\left(v-4\right)\left(v+4\right)}
Do the multiplications in 7v-19+5\left(v+4\right).
\frac{12v+1}{\left(v-4\right)\left(v+4\right)}
Combine like terms in 7v-19+5v+20.
\frac{12v+1}{v^{2}-16}
Expand \left(v-4\right)\left(v+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}