Solve for n
n=2+\frac{6}{\epsilon }
\epsilon \neq 0
Solve for ε
\epsilon =-\frac{6}{2-n}
n\neq 2
Share
Copied to clipboard
6=\epsilon \left(n-2\right)
Variable n cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by n-2.
6=\epsilon n-2\epsilon
Use the distributive property to multiply \epsilon by n-2.
\epsilon n-2\epsilon =6
Swap sides so that all variable terms are on the left hand side.
\epsilon n=6+2\epsilon
Add 2\epsilon to both sides.
\epsilon n=2\epsilon +6
The equation is in standard form.
\frac{\epsilon n}{\epsilon }=\frac{2\epsilon +6}{\epsilon }
Divide both sides by \epsilon .
n=\frac{2\epsilon +6}{\epsilon }
Dividing by \epsilon undoes the multiplication by \epsilon .
n=2+\frac{6}{\epsilon }
Divide 6+2\epsilon by \epsilon .
n=2+\frac{6}{\epsilon }\text{, }n\neq 2
Variable n cannot be equal to 2.
6=\epsilon \left(n-2\right)
Multiply both sides of the equation by n-2.
6=\epsilon n-2\epsilon
Use the distributive property to multiply \epsilon by n-2.
\epsilon n-2\epsilon =6
Swap sides so that all variable terms are on the left hand side.
\left(n-2\right)\epsilon =6
Combine all terms containing \epsilon .
\frac{\left(n-2\right)\epsilon }{n-2}=\frac{6}{n-2}
Divide both sides by n-2.
\epsilon =\frac{6}{n-2}
Dividing by n-2 undoes the multiplication by n-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}