Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6}{\left(a-7\right)\left(a+5\right)}-\frac{2}{\left(a+4\right)\left(a+5\right)}
Factor a^{2}-2a-35. Factor a^{2}+9a+20.
\frac{6\left(a+4\right)}{\left(a-7\right)\left(a+4\right)\left(a+5\right)}-\frac{2\left(a-7\right)}{\left(a-7\right)\left(a+4\right)\left(a+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-7\right)\left(a+5\right) and \left(a+4\right)\left(a+5\right) is \left(a-7\right)\left(a+4\right)\left(a+5\right). Multiply \frac{6}{\left(a-7\right)\left(a+5\right)} times \frac{a+4}{a+4}. Multiply \frac{2}{\left(a+4\right)\left(a+5\right)} times \frac{a-7}{a-7}.
\frac{6\left(a+4\right)-2\left(a-7\right)}{\left(a-7\right)\left(a+4\right)\left(a+5\right)}
Since \frac{6\left(a+4\right)}{\left(a-7\right)\left(a+4\right)\left(a+5\right)} and \frac{2\left(a-7\right)}{\left(a-7\right)\left(a+4\right)\left(a+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6a+24-2a+14}{\left(a-7\right)\left(a+4\right)\left(a+5\right)}
Do the multiplications in 6\left(a+4\right)-2\left(a-7\right).
\frac{4a+38}{\left(a-7\right)\left(a+4\right)\left(a+5\right)}
Combine like terms in 6a+24-2a+14.
\frac{4a+38}{a^{3}+2a^{2}-43a-140}
Expand \left(a-7\right)\left(a+4\right)\left(a+5\right).