Solve for a
a=-5
a = \frac{5}{4} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\left(a-2\right)\left(a-1\right)\times 6-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Variable a cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(a-1\right)\left(a+1\right), the least common multiple of a+1,1-a,a-2.
\left(a^{2}-3a+2\right)\times 6-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply a-2 by a-1 and combine like terms.
6a^{2}-18a+12-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply a^{2}-3a+2 by 6.
6a^{2}-18a+12-3\left(-2+a\right)\left(1+a\right)=\left(a^{2}-1\right)\times 7
Multiply -1 and 3 to get -3.
6a^{2}-18a+12+\left(6-3a\right)\left(1+a\right)=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply -3 by -2+a.
6a^{2}-18a+12+6+3a-3a^{2}=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply 6-3a by 1+a and combine like terms.
6a^{2}-18a+18+3a-3a^{2}=\left(a^{2}-1\right)\times 7
Add 12 and 6 to get 18.
6a^{2}-15a+18-3a^{2}=\left(a^{2}-1\right)\times 7
Combine -18a and 3a to get -15a.
3a^{2}-15a+18=\left(a^{2}-1\right)\times 7
Combine 6a^{2} and -3a^{2} to get 3a^{2}.
3a^{2}-15a+18=7a^{2}-7
Use the distributive property to multiply a^{2}-1 by 7.
3a^{2}-15a+18-7a^{2}=-7
Subtract 7a^{2} from both sides.
-4a^{2}-15a+18=-7
Combine 3a^{2} and -7a^{2} to get -4a^{2}.
-4a^{2}-15a+18+7=0
Add 7 to both sides.
-4a^{2}-15a+25=0
Add 18 and 7 to get 25.
a=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-4\right)\times 25}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -15 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-15\right)±\sqrt{225-4\left(-4\right)\times 25}}{2\left(-4\right)}
Square -15.
a=\frac{-\left(-15\right)±\sqrt{225+16\times 25}}{2\left(-4\right)}
Multiply -4 times -4.
a=\frac{-\left(-15\right)±\sqrt{225+400}}{2\left(-4\right)}
Multiply 16 times 25.
a=\frac{-\left(-15\right)±\sqrt{625}}{2\left(-4\right)}
Add 225 to 400.
a=\frac{-\left(-15\right)±25}{2\left(-4\right)}
Take the square root of 625.
a=\frac{15±25}{2\left(-4\right)}
The opposite of -15 is 15.
a=\frac{15±25}{-8}
Multiply 2 times -4.
a=\frac{40}{-8}
Now solve the equation a=\frac{15±25}{-8} when ± is plus. Add 15 to 25.
a=-5
Divide 40 by -8.
a=-\frac{10}{-8}
Now solve the equation a=\frac{15±25}{-8} when ± is minus. Subtract 25 from 15.
a=\frac{5}{4}
Reduce the fraction \frac{-10}{-8} to lowest terms by extracting and canceling out 2.
a=-5 a=\frac{5}{4}
The equation is now solved.
\left(a-2\right)\left(a-1\right)\times 6-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Variable a cannot be equal to any of the values -1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(a-1\right)\left(a+1\right), the least common multiple of a+1,1-a,a-2.
\left(a^{2}-3a+2\right)\times 6-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply a-2 by a-1 and combine like terms.
6a^{2}-18a+12-\left(-2+a\right)\left(1+a\right)\times 3=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply a^{2}-3a+2 by 6.
6a^{2}-18a+12-3\left(-2+a\right)\left(1+a\right)=\left(a^{2}-1\right)\times 7
Multiply -1 and 3 to get -3.
6a^{2}-18a+12+\left(6-3a\right)\left(1+a\right)=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply -3 by -2+a.
6a^{2}-18a+12+6+3a-3a^{2}=\left(a^{2}-1\right)\times 7
Use the distributive property to multiply 6-3a by 1+a and combine like terms.
6a^{2}-18a+18+3a-3a^{2}=\left(a^{2}-1\right)\times 7
Add 12 and 6 to get 18.
6a^{2}-15a+18-3a^{2}=\left(a^{2}-1\right)\times 7
Combine -18a and 3a to get -15a.
3a^{2}-15a+18=\left(a^{2}-1\right)\times 7
Combine 6a^{2} and -3a^{2} to get 3a^{2}.
3a^{2}-15a+18=7a^{2}-7
Use the distributive property to multiply a^{2}-1 by 7.
3a^{2}-15a+18-7a^{2}=-7
Subtract 7a^{2} from both sides.
-4a^{2}-15a+18=-7
Combine 3a^{2} and -7a^{2} to get -4a^{2}.
-4a^{2}-15a=-7-18
Subtract 18 from both sides.
-4a^{2}-15a=-25
Subtract 18 from -7 to get -25.
\frac{-4a^{2}-15a}{-4}=-\frac{25}{-4}
Divide both sides by -4.
a^{2}+\left(-\frac{15}{-4}\right)a=-\frac{25}{-4}
Dividing by -4 undoes the multiplication by -4.
a^{2}+\frac{15}{4}a=-\frac{25}{-4}
Divide -15 by -4.
a^{2}+\frac{15}{4}a=\frac{25}{4}
Divide -25 by -4.
a^{2}+\frac{15}{4}a+\left(\frac{15}{8}\right)^{2}=\frac{25}{4}+\left(\frac{15}{8}\right)^{2}
Divide \frac{15}{4}, the coefficient of the x term, by 2 to get \frac{15}{8}. Then add the square of \frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+\frac{15}{4}a+\frac{225}{64}=\frac{25}{4}+\frac{225}{64}
Square \frac{15}{8} by squaring both the numerator and the denominator of the fraction.
a^{2}+\frac{15}{4}a+\frac{225}{64}=\frac{625}{64}
Add \frac{25}{4} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a+\frac{15}{8}\right)^{2}=\frac{625}{64}
Factor a^{2}+\frac{15}{4}a+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{15}{8}\right)^{2}}=\sqrt{\frac{625}{64}}
Take the square root of both sides of the equation.
a+\frac{15}{8}=\frac{25}{8} a+\frac{15}{8}=-\frac{25}{8}
Simplify.
a=\frac{5}{4} a=-5
Subtract \frac{15}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}