Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(9-i\right)}{\left(9+i\right)\left(9-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 9-i.
\frac{6\left(9-i\right)}{9^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(9-i\right)}{82}
By definition, i^{2} is -1. Calculate the denominator.
\frac{6\times 9+6\left(-i\right)}{82}
Multiply 6 times 9-i.
\frac{54-6i}{82}
Do the multiplications in 6\times 9+6\left(-i\right).
\frac{27}{41}-\frac{3}{41}i
Divide 54-6i by 82 to get \frac{27}{41}-\frac{3}{41}i.
Re(\frac{6\left(9-i\right)}{\left(9+i\right)\left(9-i\right)})
Multiply both numerator and denominator of \frac{6}{9+i} by the complex conjugate of the denominator, 9-i.
Re(\frac{6\left(9-i\right)}{9^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{6\left(9-i\right)}{82})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{6\times 9+6\left(-i\right)}{82})
Multiply 6 times 9-i.
Re(\frac{54-6i}{82})
Do the multiplications in 6\times 9+6\left(-i\right).
Re(\frac{27}{41}-\frac{3}{41}i)
Divide 54-6i by 82 to get \frac{27}{41}-\frac{3}{41}i.
\frac{27}{41}
The real part of \frac{27}{41}-\frac{3}{41}i is \frac{27}{41}.