Verify
false
Share
Copied to clipboard
\frac{3}{4}+8=\frac{6+8}{8}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\frac{3}{4}+\frac{32}{4}=\frac{6+8}{8}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Convert 8 to fraction \frac{32}{4}.
\frac{3+32}{4}=\frac{6+8}{8}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Since \frac{3}{4} and \frac{32}{4} have the same denominator, add them by adding their numerators.
\frac{35}{4}=\frac{6+8}{8}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Add 3 and 32 to get 35.
\frac{35}{4}=\frac{14}{8}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Add 6 and 8 to get 14.
\frac{35}{4}=\frac{7}{4}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
\text{false}\text{ and }\frac{6+8}{8}=\frac{1}{8}
Compare \frac{35}{4} and \frac{7}{4}.
\text{false}\text{ and }\frac{14}{8}=\frac{1}{8}
Add 6 and 8 to get 14.
\text{false}\text{ and }\text{false}
Compare \frac{14}{8} and \frac{1}{8}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}