Solve for x
x = \frac{433}{49} = 8\frac{41}{49} \approx 8.836734694
Graph
Share
Copied to clipboard
6-7\times 2=49\left(x-9\right)
Variable x cannot be equal to 9 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-9\right), the least common multiple of 7x-63,x-9.
6-14=49\left(x-9\right)
Multiply -7 and 2 to get -14.
-8=49\left(x-9\right)
Subtract 14 from 6 to get -8.
-8=49x-441
Use the distributive property to multiply 49 by x-9.
49x-441=-8
Swap sides so that all variable terms are on the left hand side.
49x=-8+441
Add 441 to both sides.
49x=433
Add -8 and 441 to get 433.
x=\frac{433}{49}
Divide both sides by 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}