Solve for x
x<\frac{1}{20}
Graph
Share
Copied to clipboard
36-5\left(x+7\right)>-30\left(2-\frac{x+4}{2}\right)
Multiply both sides of the equation by 30, the least common multiple of 5,6. Since 30 is positive, the inequality direction remains the same.
36-5x-35>-30\left(2-\frac{x+4}{2}\right)
Use the distributive property to multiply -5 by x+7.
1-5x>-30\left(2-\frac{x+4}{2}\right)
Subtract 35 from 36 to get 1.
1-5x>-60-30\left(-\frac{x+4}{2}\right)
Use the distributive property to multiply -30 by 2-\frac{x+4}{2}.
1-5x>-60+30\times \frac{x+4}{2}
Multiply -30 and -1 to get 30.
1-5x>-60+15\left(x+4\right)
Cancel out 2, the greatest common factor in 30 and 2.
1-5x>-60+15x+60
Use the distributive property to multiply 15 by x+4.
1-5x>15x
Add -60 and 60 to get 0.
1-5x-15x>0
Subtract 15x from both sides.
1-20x>0
Combine -5x and -15x to get -20x.
-20x>-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x<\frac{-1}{-20}
Divide both sides by -20. Since -20 is negative, the inequality direction is changed.
x<\frac{1}{20}
Fraction \frac{-1}{-20} can be simplified to \frac{1}{20} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}