Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(5-\sqrt{11}\right)}{\left(5+\sqrt{11}\right)\left(5-\sqrt{11}\right)}
Rationalize the denominator of \frac{6}{5+\sqrt{11}} by multiplying numerator and denominator by 5-\sqrt{11}.
\frac{6\left(5-\sqrt{11}\right)}{5^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(5+\sqrt{11}\right)\left(5-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(5-\sqrt{11}\right)}{25-11}
Square 5. Square \sqrt{11}.
\frac{6\left(5-\sqrt{11}\right)}{14}
Subtract 11 from 25 to get 14.
\frac{3}{7}\left(5-\sqrt{11}\right)
Divide 6\left(5-\sqrt{11}\right) by 14 to get \frac{3}{7}\left(5-\sqrt{11}\right).
\frac{3}{7}\times 5+\frac{3}{7}\left(-1\right)\sqrt{11}
Use the distributive property to multiply \frac{3}{7} by 5-\sqrt{11}.
\frac{3\times 5}{7}+\frac{3}{7}\left(-1\right)\sqrt{11}
Express \frac{3}{7}\times 5 as a single fraction.
\frac{15}{7}+\frac{3}{7}\left(-1\right)\sqrt{11}
Multiply 3 and 5 to get 15.
\frac{15}{7}-\frac{3}{7}\sqrt{11}
Multiply \frac{3}{7} and -1 to get -\frac{3}{7}.