Evaluate
\frac{3}{2cj}+\frac{5}{3c^{2}}
Factor
\frac{\frac{10j}{c}+9}{6cj}
Share
Copied to clipboard
\frac{6\times 3c}{12jc^{2}}+\frac{5\times 4j}{12jc^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4cj and 3c^{2} is 12jc^{2}. Multiply \frac{6}{4cj} times \frac{3c}{3c}. Multiply \frac{5}{3c^{2}} times \frac{4j}{4j}.
\frac{6\times 3c+5\times 4j}{12jc^{2}}
Since \frac{6\times 3c}{12jc^{2}} and \frac{5\times 4j}{12jc^{2}} have the same denominator, add them by adding their numerators.
\frac{18c+20j}{12jc^{2}}
Do the multiplications in 6\times 3c+5\times 4j.
\frac{2\left(9c+10j\right)}{12jc^{2}}
Factor the expressions that are not already factored in \frac{18c+20j}{12jc^{2}}.
\frac{9c+10j}{6jc^{2}}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}