Solve for x
x=\frac{5y}{12}+\frac{3}{4}
Solve for y
y=\frac{12x-9}{5}
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 6 } { 4 } + \frac { 5 } { 6 } y = \frac { 8 } { 4 } x
Share
Copied to clipboard
\frac{3}{2}+\frac{5}{6}y=\frac{8}{4}x
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}+\frac{5}{6}y=2x
Divide 8 by 4 to get 2.
2x=\frac{3}{2}+\frac{5}{6}y
Swap sides so that all variable terms are on the left hand side.
2x=\frac{5y}{6}+\frac{3}{2}
The equation is in standard form.
\frac{2x}{2}=\frac{\frac{5y}{6}+\frac{3}{2}}{2}
Divide both sides by 2.
x=\frac{\frac{5y}{6}+\frac{3}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{5y}{12}+\frac{3}{4}
Divide \frac{3}{2}+\frac{5y}{6} by 2.
\frac{3}{2}+\frac{5}{6}y=\frac{8}{4}x
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{2}+\frac{5}{6}y=2x
Divide 8 by 4 to get 2.
\frac{5}{6}y=2x-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
\frac{\frac{5}{6}y}{\frac{5}{6}}=\frac{2x-\frac{3}{2}}{\frac{5}{6}}
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{2x-\frac{3}{2}}{\frac{5}{6}}
Dividing by \frac{5}{6} undoes the multiplication by \frac{5}{6}.
y=\frac{12x-9}{5}
Divide 2x-\frac{3}{2} by \frac{5}{6} by multiplying 2x-\frac{3}{2} by the reciprocal of \frac{5}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}