Evaluate
17
Factor
17
Quiz
Arithmetic
5 problems similar to:
\frac { 6 } { 3 - \sqrt { 7 } } + \frac { 1 } { 8 + 3 \sqrt { 7 } }
Share
Copied to clipboard
\frac{6\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}+\frac{1}{8+3\sqrt{7}}
Rationalize the denominator of \frac{6}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
\frac{6\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{1}{8+3\sqrt{7}}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(3+\sqrt{7}\right)}{9-7}+\frac{1}{8+3\sqrt{7}}
Square 3. Square \sqrt{7}.
\frac{6\left(3+\sqrt{7}\right)}{2}+\frac{1}{8+3\sqrt{7}}
Subtract 7 from 9 to get 2.
3\left(3+\sqrt{7}\right)+\frac{1}{8+3\sqrt{7}}
Divide 6\left(3+\sqrt{7}\right) by 2 to get 3\left(3+\sqrt{7}\right).
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{\left(8+3\sqrt{7}\right)\left(8-3\sqrt{7}\right)}
Rationalize the denominator of \frac{1}{8+3\sqrt{7}} by multiplying numerator and denominator by 8-3\sqrt{7}.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{8^{2}-\left(3\sqrt{7}\right)^{2}}
Consider \left(8+3\sqrt{7}\right)\left(8-3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{64-\left(3\sqrt{7}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{64-3^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(3\sqrt{7}\right)^{2}.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{64-9\left(\sqrt{7}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{64-9\times 7}
The square of \sqrt{7} is 7.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{64-63}
Multiply 9 and 7 to get 63.
3\left(3+\sqrt{7}\right)+\frac{8-3\sqrt{7}}{1}
Subtract 63 from 64 to get 1.
3\left(3+\sqrt{7}\right)+8-3\sqrt{7}
Anything divided by one gives itself.
9+3\sqrt{7}+8-3\sqrt{7}
Use the distributive property to multiply 3 by 3+\sqrt{7}.
17+3\sqrt{7}-3\sqrt{7}
Add 9 and 8 to get 17.
17
Combine 3\sqrt{7} and -3\sqrt{7} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}