Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{6}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{6\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{6\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{3}{2}\left(3+\sqrt{5}\right)
Divide 6\left(3+\sqrt{5}\right) by 4 to get \frac{3}{2}\left(3+\sqrt{5}\right).
\frac{3}{2}\times 3+\frac{3}{2}\sqrt{5}
Use the distributive property to multiply \frac{3}{2} by 3+\sqrt{5}.
\frac{3\times 3}{2}+\frac{3}{2}\sqrt{5}
Express \frac{3}{2}\times 3 as a single fraction.
\frac{9}{2}+\frac{3}{2}\sqrt{5}
Multiply 3 and 3 to get 9.