Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6}{3\sqrt{2}+16}
Calculate 4 to the power of 2 and get 16.
\frac{6\left(3\sqrt{2}-16\right)}{\left(3\sqrt{2}+16\right)\left(3\sqrt{2}-16\right)}
Rationalize the denominator of \frac{6}{3\sqrt{2}+16} by multiplying numerator and denominator by 3\sqrt{2}-16.
\frac{6\left(3\sqrt{2}-16\right)}{\left(3\sqrt{2}\right)^{2}-16^{2}}
Consider \left(3\sqrt{2}+16\right)\left(3\sqrt{2}-16\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(3\sqrt{2}-16\right)}{3^{2}\left(\sqrt{2}\right)^{2}-16^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{6\left(3\sqrt{2}-16\right)}{9\left(\sqrt{2}\right)^{2}-16^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{6\left(3\sqrt{2}-16\right)}{9\times 2-16^{2}}
The square of \sqrt{2} is 2.
\frac{6\left(3\sqrt{2}-16\right)}{18-16^{2}}
Multiply 9 and 2 to get 18.
\frac{6\left(3\sqrt{2}-16\right)}{18-256}
Calculate 16 to the power of 2 and get 256.
\frac{6\left(3\sqrt{2}-16\right)}{-238}
Subtract 256 from 18 to get -238.
-\frac{3}{119}\left(3\sqrt{2}-16\right)
Divide 6\left(3\sqrt{2}-16\right) by -238 to get -\frac{3}{119}\left(3\sqrt{2}-16\right).
-\frac{3}{119}\times 3\sqrt{2}-\frac{3}{119}\left(-16\right)
Use the distributive property to multiply -\frac{3}{119} by 3\sqrt{2}-16.
\frac{-3\times 3}{119}\sqrt{2}-\frac{3}{119}\left(-16\right)
Express -\frac{3}{119}\times 3 as a single fraction.
\frac{-9}{119}\sqrt{2}-\frac{3}{119}\left(-16\right)
Multiply -3 and 3 to get -9.
-\frac{9}{119}\sqrt{2}-\frac{3}{119}\left(-16\right)
Fraction \frac{-9}{119} can be rewritten as -\frac{9}{119} by extracting the negative sign.
-\frac{9}{119}\sqrt{2}+\frac{-3\left(-16\right)}{119}
Express -\frac{3}{119}\left(-16\right) as a single fraction.
-\frac{9}{119}\sqrt{2}+\frac{48}{119}
Multiply -3 and -16 to get 48.