Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{6}{2x}+\frac{x+6}{3x\left(x-5\right)}
Factor 3x^{2}-15x.
\frac{6\times 3\left(x-5\right)}{6x\left(x-5\right)}+\frac{2\left(x+6\right)}{6x\left(x-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 3x\left(x-5\right) is 6x\left(x-5\right). Multiply \frac{6}{2x} times \frac{3\left(x-5\right)}{3\left(x-5\right)}. Multiply \frac{x+6}{3x\left(x-5\right)} times \frac{2}{2}.
\frac{6\times 3\left(x-5\right)+2\left(x+6\right)}{6x\left(x-5\right)}
Since \frac{6\times 3\left(x-5\right)}{6x\left(x-5\right)} and \frac{2\left(x+6\right)}{6x\left(x-5\right)} have the same denominator, add them by adding their numerators.
\frac{18x-90+2x+12}{6x\left(x-5\right)}
Do the multiplications in 6\times 3\left(x-5\right)+2\left(x+6\right).
\frac{20x-78}{6x\left(x-5\right)}
Combine like terms in 18x-90+2x+12.
\frac{2\left(10x-39\right)}{6x\left(x-5\right)}
Factor the expressions that are not already factored in \frac{20x-78}{6x\left(x-5\right)}.
\frac{10x-39}{3x\left(x-5\right)}
Cancel out 2 in both numerator and denominator.
\frac{10x-39}{3x^{2}-15x}
Expand 3x\left(x-5\right).
\frac{6}{2x}+\frac{x+6}{3x\left(x-5\right)}
Factor 3x^{2}-15x.
\frac{6\times 3\left(x-5\right)}{6x\left(x-5\right)}+\frac{2\left(x+6\right)}{6x\left(x-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and 3x\left(x-5\right) is 6x\left(x-5\right). Multiply \frac{6}{2x} times \frac{3\left(x-5\right)}{3\left(x-5\right)}. Multiply \frac{x+6}{3x\left(x-5\right)} times \frac{2}{2}.
\frac{6\times 3\left(x-5\right)+2\left(x+6\right)}{6x\left(x-5\right)}
Since \frac{6\times 3\left(x-5\right)}{6x\left(x-5\right)} and \frac{2\left(x+6\right)}{6x\left(x-5\right)} have the same denominator, add them by adding their numerators.
\frac{18x-90+2x+12}{6x\left(x-5\right)}
Do the multiplications in 6\times 3\left(x-5\right)+2\left(x+6\right).
\frac{20x-78}{6x\left(x-5\right)}
Combine like terms in 18x-90+2x+12.
\frac{2\left(10x-39\right)}{6x\left(x-5\right)}
Factor the expressions that are not already factored in \frac{20x-78}{6x\left(x-5\right)}.
\frac{10x-39}{3x\left(x-5\right)}
Cancel out 2 in both numerator and denominator.
\frac{10x-39}{3x^{2}-15x}
Expand 3x\left(x-5\right).