Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3-\frac{24}{\sqrt{20}}+2\sqrt{50}-3\sqrt{8}
Divide 6 by 2 to get 3.
3-\frac{24}{2\sqrt{5}}+2\sqrt{50}-3\sqrt{8}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
3-\frac{24\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}+2\sqrt{50}-3\sqrt{8}
Rationalize the denominator of \frac{24}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
3-\frac{24\sqrt{5}}{2\times 5}+2\sqrt{50}-3\sqrt{8}
The square of \sqrt{5} is 5.
3-\frac{12\sqrt{5}}{5}+2\sqrt{50}-3\sqrt{8}
Cancel out 2 in both numerator and denominator.
3-\frac{12\sqrt{5}}{5}+2\times 5\sqrt{2}-3\sqrt{8}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
3-\frac{12\sqrt{5}}{5}+10\sqrt{2}-3\sqrt{8}
Multiply 2 and 5 to get 10.
3-\frac{12\sqrt{5}}{5}+10\sqrt{2}-3\times 2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3-\frac{12\sqrt{5}}{5}+10\sqrt{2}-6\sqrt{2}
Multiply -3 and 2 to get -6.
3-\frac{12\sqrt{5}}{5}+4\sqrt{2}
Combine 10\sqrt{2} and -6\sqrt{2} to get 4\sqrt{2}.
\frac{5\left(3+4\sqrt{2}\right)}{5}-\frac{12\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3+4\sqrt{2} times \frac{5}{5}.
\frac{5\left(3+4\sqrt{2}\right)-12\sqrt{5}}{5}
Since \frac{5\left(3+4\sqrt{2}\right)}{5} and \frac{12\sqrt{5}}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{15+20\sqrt{2}-12\sqrt{5}}{5}
Do the multiplications in 5\left(3+4\sqrt{2}\right)-12\sqrt{5}.