\frac { 6 } { 1,02 } + \frac { 6 } { 1,03 ^ { 2 } } + \frac { 6 } { 1,038 ^ { 3 } } + \frac { 106 } { 1,044 ^ { 2 } }
Evaluate
\frac{2236173911}{338615112}\approx 6,603881019
Factor
\frac{3727 \cdot 599993}{3 \cdot 17 \cdot 2 ^ {3} \cdot 11 ^ {2} \cdot 19 ^ {3}} = 6\frac{204483239}{338615112} = 6.603881019344464
Share
Copied to clipboard
\frac{600}{102}+\frac{6}{1\times 3^{2}}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Expand \frac{6}{1,02} by multiplying both numerator and the denominator by 100.
\frac{100}{17}+\frac{6}{1\times 3^{2}}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Reduce the fraction \frac{600}{102} to lowest terms by extracting and canceling out 6.
\frac{100}{17}+\frac{6}{1\times 9}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{100}{17}+\frac{6}{9}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Multiply 1 and 9 to get 9.
\frac{100}{17}+\frac{2}{3}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{300}{51}+\frac{34}{51}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Least common multiple of 17 and 3 is 51. Convert \frac{100}{17} and \frac{2}{3} to fractions with denominator 51.
\frac{300+34}{51}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Since \frac{300}{51} and \frac{34}{51} have the same denominator, add them by adding their numerators.
\frac{334}{51}+\frac{6}{1\times 38^{3}}+\frac{106}{1\times 44^{2}}
Add 300 and 34 to get 334.
\frac{334}{51}+\frac{6}{1\times 54872}+\frac{106}{1\times 44^{2}}
Calculate 38 to the power of 3 and get 54872.
\frac{334}{51}+\frac{6}{54872}+\frac{106}{1\times 44^{2}}
Multiply 1 and 54872 to get 54872.
\frac{334}{51}+\frac{3}{27436}+\frac{106}{1\times 44^{2}}
Reduce the fraction \frac{6}{54872} to lowest terms by extracting and canceling out 2.
\frac{9163624}{1399236}+\frac{153}{1399236}+\frac{106}{1\times 44^{2}}
Least common multiple of 51 and 27436 is 1399236. Convert \frac{334}{51} and \frac{3}{27436} to fractions with denominator 1399236.
\frac{9163624+153}{1399236}+\frac{106}{1\times 44^{2}}
Since \frac{9163624}{1399236} and \frac{153}{1399236} have the same denominator, add them by adding their numerators.
\frac{9163777}{1399236}+\frac{106}{1\times 44^{2}}
Add 9163624 and 153 to get 9163777.
\frac{9163777}{1399236}+\frac{106}{1\times 1936}
Calculate 44 to the power of 2 and get 1936.
\frac{9163777}{1399236}+\frac{106}{1936}
Multiply 1 and 1936 to get 1936.
\frac{9163777}{1399236}+\frac{53}{968}
Reduce the fraction \frac{106}{1936} to lowest terms by extracting and canceling out 2.
\frac{2217634034}{338615112}+\frac{18539877}{338615112}
Least common multiple of 1399236 and 968 is 338615112. Convert \frac{9163777}{1399236} and \frac{53}{968} to fractions with denominator 338615112.
\frac{2217634034+18539877}{338615112}
Since \frac{2217634034}{338615112} and \frac{18539877}{338615112} have the same denominator, add them by adding their numerators.
\frac{2236173911}{338615112}
Add 2217634034 and 18539877 to get 2236173911.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}