Evaluate
\frac{2\left(1+2a-a^{2}\right)}{\left(a-3\right)\left(a-1\right)}
Expand
-\frac{2\left(a^{2}-2a-1\right)}{\left(a-3\right)\left(a-1\right)}
Share
Copied to clipboard
-2-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Divide 6 by -3 to get -2.
-\frac{2\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{a-1}{a-1}.
\frac{-2\left(a-1\right)-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Since -\frac{2\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a+2-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Do the multiplications in -2\left(a-1\right)-3.
\frac{-2a-1}{a-1}-\frac{a+1}{a^{2}-4a+3}
Combine like terms in -2a+2-3.
\frac{-2a-1}{a-1}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
Factor a^{2}-4a+3.
\frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right). Multiply \frac{-2a-1}{a-1} times \frac{a-3}{a-3}.
\frac{\left(-2a-1\right)\left(a-3\right)-\left(a+1\right)}{\left(a-3\right)\left(a-1\right)}
Since \frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)} and \frac{a+1}{\left(a-3\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+6a-a+3-a-1}{\left(a-3\right)\left(a-1\right)}
Do the multiplications in \left(-2a-1\right)\left(a-3\right)-\left(a+1\right).
\frac{-2a^{2}+4a+2}{\left(a-3\right)\left(a-1\right)}
Combine like terms in -2a^{2}+6a-a+3-a-1.
\frac{-2a^{2}+4a+2}{a^{2}-4a+3}
Expand \left(a-3\right)\left(a-1\right).
-2-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Divide 6 by -3 to get -2.
-\frac{2\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{a-1}{a-1}.
\frac{-2\left(a-1\right)-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Since -\frac{2\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a+2-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Do the multiplications in -2\left(a-1\right)-3.
\frac{-2a-1}{a-1}-\frac{a+1}{a^{2}-4a+3}
Combine like terms in -2a+2-3.
\frac{-2a-1}{a-1}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
Factor a^{2}-4a+3.
\frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right). Multiply \frac{-2a-1}{a-1} times \frac{a-3}{a-3}.
\frac{\left(-2a-1\right)\left(a-3\right)-\left(a+1\right)}{\left(a-3\right)\left(a-1\right)}
Since \frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)} and \frac{a+1}{\left(a-3\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+6a-a+3-a-1}{\left(a-3\right)\left(a-1\right)}
Do the multiplications in \left(-2a-1\right)\left(a-3\right)-\left(a+1\right).
\frac{-2a^{2}+4a+2}{\left(a-3\right)\left(a-1\right)}
Combine like terms in -2a^{2}+6a-a+3-a-1.
\frac{-2a^{2}+4a+2}{a^{2}-4a+3}
Expand \left(a-3\right)\left(a-1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}