Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-2-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Divide 6 by -3 to get -2.
-\frac{2\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{a-1}{a-1}.
\frac{-2\left(a-1\right)-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Since -\frac{2\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a+2-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Do the multiplications in -2\left(a-1\right)-3.
\frac{-2a-1}{a-1}-\frac{a+1}{a^{2}-4a+3}
Combine like terms in -2a+2-3.
\frac{-2a-1}{a-1}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
Factor a^{2}-4a+3.
\frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right). Multiply \frac{-2a-1}{a-1} times \frac{a-3}{a-3}.
\frac{\left(-2a-1\right)\left(a-3\right)-\left(a+1\right)}{\left(a-3\right)\left(a-1\right)}
Since \frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)} and \frac{a+1}{\left(a-3\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+6a-a+3-a-1}{\left(a-3\right)\left(a-1\right)}
Do the multiplications in \left(-2a-1\right)\left(a-3\right)-\left(a+1\right).
\frac{-2a^{2}+4a+2}{\left(a-3\right)\left(a-1\right)}
Combine like terms in -2a^{2}+6a-a+3-a-1.
\frac{-2a^{2}+4a+2}{a^{2}-4a+3}
Expand \left(a-3\right)\left(a-1\right).
-2-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Divide 6 by -3 to get -2.
-\frac{2\left(a-1\right)}{a-1}-\frac{3}{a-1}-\frac{a+1}{a^{2}-4a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{a-1}{a-1}.
\frac{-2\left(a-1\right)-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Since -\frac{2\left(a-1\right)}{a-1} and \frac{3}{a-1} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a+2-3}{a-1}-\frac{a+1}{a^{2}-4a+3}
Do the multiplications in -2\left(a-1\right)-3.
\frac{-2a-1}{a-1}-\frac{a+1}{a^{2}-4a+3}
Combine like terms in -2a+2-3.
\frac{-2a-1}{a-1}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
Factor a^{2}-4a+3.
\frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)}-\frac{a+1}{\left(a-3\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right). Multiply \frac{-2a-1}{a-1} times \frac{a-3}{a-3}.
\frac{\left(-2a-1\right)\left(a-3\right)-\left(a+1\right)}{\left(a-3\right)\left(a-1\right)}
Since \frac{\left(-2a-1\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)} and \frac{a+1}{\left(a-3\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2a^{2}+6a-a+3-a-1}{\left(a-3\right)\left(a-1\right)}
Do the multiplications in \left(-2a-1\right)\left(a-3\right)-\left(a+1\right).
\frac{-2a^{2}+4a+2}{\left(a-3\right)\left(a-1\right)}
Combine like terms in -2a^{2}+6a-a+3-a-1.
\frac{-2a^{2}+4a+2}{a^{2}-4a+3}
Expand \left(a-3\right)\left(a-1\right).