\frac { 6 } { - 1,8 } - \frac { 3 } { 2 ( - 1,8 ) }
Evaluate
-2,5
Factor
-2,5
Share
Copied to clipboard
\frac{60}{-18}-\frac{3}{2\left(-1,8\right)}
Expand \frac{6}{-1,8} by multiplying both numerator and the denominator by 10.
-\frac{10}{3}-\frac{3}{2\left(-1,8\right)}
Reduce the fraction \frac{60}{-18} to lowest terms by extracting and canceling out 6.
-\frac{10}{3}-\frac{3}{-3,6}
Multiply 2 and -1,8 to get -3,6.
-\frac{10}{3}-\frac{30}{-36}
Expand \frac{3}{-3,6} by multiplying both numerator and the denominator by 10.
-\frac{10}{3}-\left(-\frac{5}{6}\right)
Reduce the fraction \frac{30}{-36} to lowest terms by extracting and canceling out 6.
-\frac{10}{3}+\frac{5}{6}
The opposite of -\frac{5}{6} is \frac{5}{6}.
-\frac{20}{6}+\frac{5}{6}
Least common multiple of 3 and 6 is 6. Convert -\frac{10}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{-20+5}{6}
Since -\frac{20}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{-15}{6}
Add -20 and 5 to get -15.
-\frac{5}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}