Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}
Rationalize the denominator of \frac{6}{\sqrt{5}+1} by multiplying numerator and denominator by \sqrt{5}-1.
\frac{6\left(\sqrt{5}-1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{5}-1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{6\left(\sqrt{5}-1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{3}{2}\left(\sqrt{5}-1\right)
Divide 6\left(\sqrt{5}-1\right) by 4 to get \frac{3}{2}\left(\sqrt{5}-1\right).
\frac{3}{2}\sqrt{5}+\frac{3}{2}\left(-1\right)
Use the distributive property to multiply \frac{3}{2} by \sqrt{5}-1.
\frac{3}{2}\sqrt{5}-\frac{3}{2}
Multiply \frac{3}{2} and -1 to get -\frac{3}{2}.