Evaluate
12\sqrt{3}\approx 20.784609691
Share
Copied to clipboard
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{6}{\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{6}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{6}{\sqrt{3}+\sqrt{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\frac{6}{\sqrt{3}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{1}+\frac{6}{\sqrt{3}+\sqrt{2}}
Subtract 2 from 3 to get 1.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6}{\sqrt{3}+\sqrt{2}}
Anything divided by one gives itself.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{6}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
6\left(\sqrt{3}+\sqrt{2}\right)+6\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
6\sqrt{3}+6\sqrt{2}+6\left(\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply 6 by \sqrt{3}+\sqrt{2}.
6\sqrt{3}+6\sqrt{2}+6\sqrt{3}-6\sqrt{2}
Use the distributive property to multiply 6 by \sqrt{3}-\sqrt{2}.
12\sqrt{3}+6\sqrt{2}-6\sqrt{2}
Combine 6\sqrt{3} and 6\sqrt{3} to get 12\sqrt{3}.
12\sqrt{3}
Combine 6\sqrt{2} and -6\sqrt{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}