Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+\frac{6}{\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{6}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{6}{\sqrt{3}+\sqrt{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\frac{6}{\sqrt{3}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
\frac{6\left(\sqrt{3}+\sqrt{2}\right)}{1}+\frac{6}{\sqrt{3}+\sqrt{2}}
Subtract 2 from 3 to get 1.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6}{\sqrt{3}+\sqrt{2}}
Anything divided by one gives itself.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{6}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
6\left(\sqrt{3}+\sqrt{2}\right)+\frac{6\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
6\left(\sqrt{3}+\sqrt{2}\right)+6\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
6\sqrt{3}+6\sqrt{2}+6\left(\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply 6 by \sqrt{3}+\sqrt{2}.
6\sqrt{3}+6\sqrt{2}+6\sqrt{3}-6\sqrt{2}
Use the distributive property to multiply 6 by \sqrt{3}-\sqrt{2}.
12\sqrt{3}+6\sqrt{2}-6\sqrt{2}
Combine 6\sqrt{3} and 6\sqrt{3} to get 12\sqrt{3}.
12\sqrt{3}
Combine 6\sqrt{2} and -6\sqrt{2} to get 0.