Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{2}}{3-2\sqrt{2}}
Rationalize the denominator of \frac{6}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{6\sqrt{2}}{2}-\frac{\sqrt{2}}{3-2\sqrt{2}}
The square of \sqrt{2} is 2.
3\sqrt{2}-\frac{\sqrt{2}}{3-2\sqrt{2}}
Divide 6\sqrt{2} by 2 to get 3\sqrt{2}.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{3-2\sqrt{2}} by multiplying numerator and denominator by 3+2\sqrt{2}.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{3^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{9-\left(-2\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{9-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{9-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{9-4\times 2}
The square of \sqrt{2} is 2.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{9-8}
Multiply 4 and 2 to get 8.
3\sqrt{2}-\frac{\sqrt{2}\left(3+2\sqrt{2}\right)}{1}
Subtract 8 from 9 to get 1.
3\sqrt{2}-\sqrt{2}\left(3+2\sqrt{2}\right)
Anything divided by one gives itself.
3\sqrt{2}-\left(3\sqrt{2}+2\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply \sqrt{2} by 3+2\sqrt{2}.
3\sqrt{2}-\left(3\sqrt{2}+2\times 2\right)
The square of \sqrt{2} is 2.
3\sqrt{2}-\left(3\sqrt{2}+4\right)
Multiply 2 and 2 to get 4.
3\sqrt{2}-3\sqrt{2}-4
To find the opposite of 3\sqrt{2}+4, find the opposite of each term.
-4
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.