Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(\sqrt{2}-4\right)}{\left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right)}
Rationalize the denominator of \frac{6}{\sqrt{2}+4} by multiplying numerator and denominator by \sqrt{2}-4.
\frac{6\left(\sqrt{2}-4\right)}{\left(\sqrt{2}\right)^{2}-4^{2}}
Consider \left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{2}-4\right)}{2-16}
Square \sqrt{2}. Square 4.
\frac{6\left(\sqrt{2}-4\right)}{-14}
Subtract 16 from 2 to get -14.
-\frac{3}{7}\left(\sqrt{2}-4\right)
Divide 6\left(\sqrt{2}-4\right) by -14 to get -\frac{3}{7}\left(\sqrt{2}-4\right).
-\frac{3}{7}\sqrt{2}-\frac{3}{7}\left(-4\right)
Use the distributive property to multiply -\frac{3}{7} by \sqrt{2}-4.
-\frac{3}{7}\sqrt{2}+\frac{-3\left(-4\right)}{7}
Express -\frac{3}{7}\left(-4\right) as a single fraction.
-\frac{3}{7}\sqrt{2}+\frac{12}{7}
Multiply -3 and -4 to get 12.