Evaluate
-3\sqrt{3}-6\sqrt{2}\approx -13.681433797
Share
Copied to clipboard
\frac{6}{2\sqrt{3}}+\frac{24}{\sqrt{12}}-2\sqrt{48}-3\sqrt{8}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{6\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}+\frac{24}{\sqrt{12}}-2\sqrt{48}-3\sqrt{8}
Rationalize the denominator of \frac{6}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{6\sqrt{3}}{2\times 3}+\frac{24}{\sqrt{12}}-2\sqrt{48}-3\sqrt{8}
The square of \sqrt{3} is 3.
\sqrt{3}+\frac{24}{\sqrt{12}}-2\sqrt{48}-3\sqrt{8}
Cancel out 2\times 3 in both numerator and denominator.
\sqrt{3}+\frac{24}{2\sqrt{3}}-2\sqrt{48}-3\sqrt{8}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{3}+\frac{24\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}-2\sqrt{48}-3\sqrt{8}
Rationalize the denominator of \frac{24}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}+\frac{24\sqrt{3}}{2\times 3}-2\sqrt{48}-3\sqrt{8}
The square of \sqrt{3} is 3.
\sqrt{3}+4\sqrt{3}-2\sqrt{48}-3\sqrt{8}
Cancel out 2\times 3 in both numerator and denominator.
5\sqrt{3}-2\sqrt{48}-3\sqrt{8}
Combine \sqrt{3} and 4\sqrt{3} to get 5\sqrt{3}.
5\sqrt{3}-2\times 4\sqrt{3}-3\sqrt{8}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
5\sqrt{3}-8\sqrt{3}-3\sqrt{8}
Multiply -2 and 4 to get -8.
-3\sqrt{3}-3\sqrt{8}
Combine 5\sqrt{3} and -8\sqrt{3} to get -3\sqrt{3}.
-3\sqrt{3}-3\times 2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-3\sqrt{3}-6\sqrt{2}
Multiply -3 and 2 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}