Evaluate
6-\frac{12}{x}
Differentiate w.r.t. x
\frac{12}{x^{2}}
Graph
Share
Copied to clipboard
\frac{6\left(x-2\right)}{x}
Divide 6 by \frac{x}{x-2} by multiplying 6 by the reciprocal of \frac{x}{x-2}.
\frac{6x-12}{x}
Use the distributive property to multiply 6 by x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6\left(x-2\right)}{x})
Divide 6 by \frac{x}{x-2} by multiplying 6 by the reciprocal of \frac{x}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-12}{x})
Use the distributive property to multiply 6 by x-2.
\left(6x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-12)
For any two differentiable functions, the derivative of the product of two functions is the first function times the derivative of the second plus the second function times the derivative of the first.
\left(6x^{1}-12\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 6x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(6x^{1}-12\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{0}
Simplify.
6x^{1}\left(-1\right)x^{-2}-12\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{0}
Multiply 6x^{1}-12 times -x^{-2}.
-6x^{1-2}-\left(-12x^{-2}\right)+6\times \frac{1}{x}
To multiply powers of the same base, add their exponents.
-6\times \frac{1}{x}+12x^{-2}+6\times \frac{1}{x}
Simplify.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6\left(x-2\right)}{x})
Divide 6 by \frac{x}{x-2} by multiplying 6 by the reciprocal of \frac{x}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-12}{x})
Use the distributive property to multiply 6 by x-2.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-12)-\left(6x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{1}\times 6x^{1-1}-\left(6x^{1}-12\right)x^{1-1}}{\left(x^{1}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{1}\times 6x^{0}-\left(6x^{1}-12\right)x^{0}}{\left(x^{1}\right)^{2}}
Do the arithmetic.
\frac{x^{1}\times 6x^{0}-\left(6x^{1}x^{0}-12x^{0}\right)}{\left(x^{1}\right)^{2}}
Expand using distributive property.
\frac{6x^{1}-\left(6x^{1}-12x^{0}\right)}{\left(x^{1}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{6x^{1}-6x^{1}-\left(-12x^{0}\right)}{\left(x^{1}\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(6-6\right)x^{1}+\left(-\left(-12\right)\right)x^{0}}{\left(x^{1}\right)^{2}}
Combine like terms.
-\frac{-12x^{0}}{\left(x^{1}\right)^{2}}
Subtract 6 from 6.
-\frac{-12x^{0}}{1^{2}x^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
-\frac{-12x^{0}}{x^{2}}
Raise 1 to the power 2.
\frac{\left(-\left(-12\right)\right)x^{0}}{x^{2}}
Multiply 1 times 2.
\left(-\frac{-12}{1}\right)x^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
12x^{-2}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}