Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\sqrt{5}}{3+\sqrt{5}+2}
Calculate the square root of 4 and get 2.
\frac{6\sqrt{5}}{5+\sqrt{5}}
Add 3 and 2 to get 5.
\frac{6\sqrt{5}\left(5-\sqrt{5}\right)}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}
Rationalize the denominator of \frac{6\sqrt{5}}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\frac{6\sqrt{5}\left(5-\sqrt{5}\right)}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\sqrt{5}\left(5-\sqrt{5}\right)}{25-5}
Square 5. Square \sqrt{5}.
\frac{6\sqrt{5}\left(5-\sqrt{5}\right)}{20}
Subtract 5 from 25 to get 20.
\frac{30\sqrt{5}-6\left(\sqrt{5}\right)^{2}}{20}
Use the distributive property to multiply 6\sqrt{5} by 5-\sqrt{5}.
\frac{30\sqrt{5}-6\times 5}{20}
The square of \sqrt{5} is 5.
\frac{30\sqrt{5}-30}{20}
Multiply -6 and 5 to get -30.