Evaluate
-3x
Differentiate w.r.t. x
-3
Graph
Share
Copied to clipboard
3\sqrt{2}x\times \frac{-\sqrt{2}}{2}
Divide 6\sqrt{2} by 2 to get 3\sqrt{2}.
\frac{3\left(-\sqrt{2}\right)}{2}\sqrt{2}x
Express 3\times \frac{-\sqrt{2}}{2} as a single fraction.
\frac{3\left(-\sqrt{2}\right)\sqrt{2}}{2}x
Express \frac{3\left(-\sqrt{2}\right)}{2}\sqrt{2} as a single fraction.
\frac{3\left(-\sqrt{2}\right)\sqrt{2}x}{2}
Express \frac{3\left(-\sqrt{2}\right)\sqrt{2}}{2}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(3\sqrt{2}x\times \frac{-\sqrt{2}}{2})
Divide 6\sqrt{2} by 2 to get 3\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-\sqrt{2}\right)}{2}\sqrt{2}x)
Express 3\times \frac{-\sqrt{2}}{2} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-\sqrt{2}\right)\sqrt{2}}{2}x)
Express \frac{3\left(-\sqrt{2}\right)}{2}\sqrt{2} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(-\sqrt{2}\right)\sqrt{2}x}{2})
Express \frac{3\left(-\sqrt{2}\right)\sqrt{2}}{2}x as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3\sqrt{2}\sqrt{2}x}{2})
Multiply 3 and -1 to get -3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3\times 2x}{2})
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-6x}{2})
Multiply -3 and 2 to get -6.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x)
Divide -6x by 2 to get -3x.
-3x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-3x^{0}
Subtract 1 from 1.
-3
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}