Verify
false
Share
Copied to clipboard
\frac{6}{10^{4}}=\frac{-262}{2\times 303\times 8344}\left(\frac{1}{600}-\frac{1}{7}\right)
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{6}{10000}=\frac{-262}{2\times 303\times 8344}\left(\frac{1}{600}-\frac{1}{7}\right)
Calculate 10 to the power of 4 and get 10000.
\frac{3}{5000}=\frac{-262}{2\times 303\times 8344}\left(\frac{1}{600}-\frac{1}{7}\right)
Reduce the fraction \frac{6}{10000} to lowest terms by extracting and canceling out 2.
\frac{3}{5000}=\frac{-262}{606\times 8344}\left(\frac{1}{600}-\frac{1}{7}\right)
Multiply 2 and 303 to get 606.
\frac{3}{5000}=\frac{-262}{5056464}\left(\frac{1}{600}-\frac{1}{7}\right)
Multiply 606 and 8344 to get 5056464.
\frac{3}{5000}=-\frac{131}{2528232}\left(\frac{1}{600}-\frac{1}{7}\right)
Reduce the fraction \frac{-262}{5056464} to lowest terms by extracting and canceling out 2.
\frac{3}{5000}=-\frac{131}{2528232}\left(-\frac{593}{4200}\right)
Subtract \frac{1}{7} from \frac{1}{600} to get -\frac{593}{4200}.
\frac{3}{5000}=\frac{77683}{10618574400}
Multiply -\frac{131}{2528232} and -\frac{593}{4200} to get \frac{77683}{10618574400}.
\frac{159278616}{265464360000}=\frac{1942075}{265464360000}
Least common multiple of 5000 and 10618574400 is 265464360000. Convert \frac{3}{5000} and \frac{77683}{10618574400} to fractions with denominator 265464360000.
\text{false}
Compare \frac{159278616}{265464360000} and \frac{1942075}{265464360000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}