Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{6\left(72+\frac{1}{12}\left(8-2\right)+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 2 to the power of 3 and get 8.
\frac{6\left(72+\frac{1}{12}\times 6+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Subtract 2 from 8 to get 6.
\frac{6\left(72+\frac{6}{12}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 6 to get \frac{6}{12}.
\frac{6\left(72+\frac{1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{6\left(\frac{144}{2}+\frac{1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Convert 72 to fraction \frac{144}{2}.
\frac{6\left(\frac{144+1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Since \frac{144}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Add 144 and 1 to get 145.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\left(27-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 3 to the power of 3 and get 27.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\times 24+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Subtract 3 from 27 to get 24.
\frac{6\left(\frac{145}{2}+\frac{24}{12}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 24 to get \frac{24}{12}.
\frac{6\left(\frac{145}{2}+2+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Divide 24 by 12 to get 2.
\frac{6\left(\frac{145}{2}+\frac{4}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Convert 2 to fraction \frac{4}{2}.
\frac{6\left(\frac{145+4}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Since \frac{145}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Add 145 and 4 to get 149.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\left(8-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 2 to the power of 3 and get 8.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\times 6\right)}{10-\left(10^{2}-1\right)}
Subtract 2 from 8 to get 6.
\frac{6\left(\frac{149}{2}+\frac{6}{12}\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 6 to get \frac{6}{12}.
\frac{6\left(\frac{149}{2}+\frac{1}{2}\right)}{10-\left(10^{2}-1\right)}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{6\times \frac{149+1}{2}}{10-\left(10^{2}-1\right)}
Since \frac{149}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{6\times \frac{150}{2}}{10-\left(10^{2}-1\right)}
Add 149 and 1 to get 150.
\frac{6\times 75}{10-\left(10^{2}-1\right)}
Divide 150 by 2 to get 75.
\frac{450}{10-\left(10^{2}-1\right)}
Multiply 6 and 75 to get 450.
\frac{450}{10-\left(100-1\right)}
Calculate 10 to the power of 2 and get 100.
\frac{450}{10-99}
Subtract 1 from 100 to get 99.
\frac{450}{-89}
Subtract 99 from 10 to get -89.
-\frac{450}{89}
Fraction \frac{450}{-89} can be rewritten as -\frac{450}{89} by extracting the negative sign.