Evaluate
-\frac{450}{89}\approx -5.056179775
Factor
-\frac{450}{89} = -5\frac{5}{89} = -5.056179775280899
Share
Copied to clipboard
\frac{6\left(72+\frac{1}{12}\left(8-2\right)+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 2 to the power of 3 and get 8.
\frac{6\left(72+\frac{1}{12}\times 6+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Subtract 2 from 8 to get 6.
\frac{6\left(72+\frac{6}{12}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 6 to get \frac{6}{12}.
\frac{6\left(72+\frac{1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{6\left(\frac{144}{2}+\frac{1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Convert 72 to fraction \frac{144}{2}.
\frac{6\left(\frac{144+1}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Since \frac{144}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\left(3^{3}-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Add 144 and 1 to get 145.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\left(27-3\right)+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 3 to the power of 3 and get 27.
\frac{6\left(\frac{145}{2}+\frac{1}{12}\times 24+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Subtract 3 from 27 to get 24.
\frac{6\left(\frac{145}{2}+\frac{24}{12}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 24 to get \frac{24}{12}.
\frac{6\left(\frac{145}{2}+2+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Divide 24 by 12 to get 2.
\frac{6\left(\frac{145}{2}+\frac{4}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Convert 2 to fraction \frac{4}{2}.
\frac{6\left(\frac{145+4}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Since \frac{145}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\left(2^{3}-2\right)\right)}{10-\left(10^{2}-1\right)}
Add 145 and 4 to get 149.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\left(8-2\right)\right)}{10-\left(10^{2}-1\right)}
Calculate 2 to the power of 3 and get 8.
\frac{6\left(\frac{149}{2}+\frac{1}{12}\times 6\right)}{10-\left(10^{2}-1\right)}
Subtract 2 from 8 to get 6.
\frac{6\left(\frac{149}{2}+\frac{6}{12}\right)}{10-\left(10^{2}-1\right)}
Multiply \frac{1}{12} and 6 to get \frac{6}{12}.
\frac{6\left(\frac{149}{2}+\frac{1}{2}\right)}{10-\left(10^{2}-1\right)}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
\frac{6\times \frac{149+1}{2}}{10-\left(10^{2}-1\right)}
Since \frac{149}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{6\times \frac{150}{2}}{10-\left(10^{2}-1\right)}
Add 149 and 1 to get 150.
\frac{6\times 75}{10-\left(10^{2}-1\right)}
Divide 150 by 2 to get 75.
\frac{450}{10-\left(10^{2}-1\right)}
Multiply 6 and 75 to get 450.
\frac{450}{10-\left(100-1\right)}
Calculate 10 to the power of 2 and get 100.
\frac{450}{10-99}
Subtract 1 from 100 to get 99.
\frac{450}{-89}
Subtract 99 from 10 to get -89.
-\frac{450}{89}
Fraction \frac{450}{-89} can be rewritten as -\frac{450}{89} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}