Solve for c
c=\frac{\sqrt{19}+\sqrt{5}i}{2}\approx 2.179449472+1.118033989i
c=\frac{-\sqrt{5}i+\sqrt{19}}{2}\approx 2.179449472-1.118033989i
Share
Copied to clipboard
\frac{\left(6+c^{2}\right)\sqrt{19}}{2\left(\sqrt{19}\right)^{2}c}=\frac{1}{2}
Rationalize the denominator of \frac{6+c^{2}}{2\sqrt{19}c} by multiplying numerator and denominator by \sqrt{19}.
\frac{\left(6+c^{2}\right)\sqrt{19}}{2\times 19c}=\frac{1}{2}
The square of \sqrt{19} is 19.
\frac{\left(6+c^{2}\right)\sqrt{19}}{38c}=\frac{1}{2}
Multiply 2 and 19 to get 38.
\frac{6\sqrt{19}+c^{2}\sqrt{19}}{38c}=\frac{1}{2}
Use the distributive property to multiply 6+c^{2} by \sqrt{19}.
\frac{6\sqrt{19}+c^{2}\sqrt{19}}{38c}-\frac{1}{2}=0
Subtract \frac{1}{2} from both sides.
\frac{6\sqrt{19}+c^{2}\sqrt{19}}{38c}-\frac{19c}{38c}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 38c and 2 is 38c. Multiply \frac{1}{2} times \frac{19c}{19c}.
\frac{6\sqrt{19}+c^{2}\sqrt{19}-19c}{38c}=0
Since \frac{6\sqrt{19}+c^{2}\sqrt{19}}{38c} and \frac{19c}{38c} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{19}+\sqrt{19}c^{2}-19c}{38c}=0
Do the multiplications in 6\sqrt{19}+c^{2}\sqrt{19}-19c.
6\sqrt{19}+\sqrt{19}c^{2}-19c=0
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 38c.
\sqrt{19}c^{2}-19c+6\sqrt{19}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\sqrt{19}\times 6\sqrt{19}}}{2\sqrt{19}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \sqrt{19} for a, -19 for b, and 6\sqrt{19} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-19\right)±\sqrt{361-4\sqrt{19}\times 6\sqrt{19}}}{2\sqrt{19}}
Square -19.
c=\frac{-\left(-19\right)±\sqrt{361+\left(-4\sqrt{19}\right)\times 6\sqrt{19}}}{2\sqrt{19}}
Multiply -4 times \sqrt{19}.
c=\frac{-\left(-19\right)±\sqrt{361-456}}{2\sqrt{19}}
Multiply -4\sqrt{19} times 6\sqrt{19}.
c=\frac{-\left(-19\right)±\sqrt{-95}}{2\sqrt{19}}
Add 361 to -456.
c=\frac{-\left(-19\right)±\sqrt{95}i}{2\sqrt{19}}
Take the square root of -95.
c=\frac{19±\sqrt{95}i}{2\sqrt{19}}
The opposite of -19 is 19.
c=\frac{19+\sqrt{95}i}{2\sqrt{19}}
Now solve the equation c=\frac{19±\sqrt{95}i}{2\sqrt{19}} when ± is plus. Add 19 to i\sqrt{95}.
c=\frac{\sqrt{19}+\sqrt{5}i}{2}
Divide 19+i\sqrt{95} by 2\sqrt{19}.
c=\frac{-\sqrt{95}i+19}{2\sqrt{19}}
Now solve the equation c=\frac{19±\sqrt{95}i}{2\sqrt{19}} when ± is minus. Subtract i\sqrt{95} from 19.
c=\frac{-\sqrt{5}i+\sqrt{19}}{2}
Divide 19-i\sqrt{95} by 2\sqrt{19}.
c=\frac{\sqrt{19}+\sqrt{5}i}{2} c=\frac{-\sqrt{5}i+\sqrt{19}}{2}
The equation is now solved.
\frac{\left(6+c^{2}\right)\sqrt{19}}{2\left(\sqrt{19}\right)^{2}c}=\frac{1}{2}
Rationalize the denominator of \frac{6+c^{2}}{2\sqrt{19}c} by multiplying numerator and denominator by \sqrt{19}.
\frac{\left(6+c^{2}\right)\sqrt{19}}{2\times 19c}=\frac{1}{2}
The square of \sqrt{19} is 19.
\frac{\left(6+c^{2}\right)\sqrt{19}}{38c}=\frac{1}{2}
Multiply 2 and 19 to get 38.
\frac{6\sqrt{19}+c^{2}\sqrt{19}}{38c}=\frac{1}{2}
Use the distributive property to multiply 6+c^{2} by \sqrt{19}.
6\sqrt{19}+c^{2}\sqrt{19}=19c
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 38c, the least common multiple of 38c,2.
6\sqrt{19}+c^{2}\sqrt{19}-19c=0
Subtract 19c from both sides.
c^{2}\sqrt{19}-19c=-6\sqrt{19}
Subtract 6\sqrt{19} from both sides. Anything subtracted from zero gives its negation.
\sqrt{19}c^{2}-19c=-6\sqrt{19}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\sqrt{19}c^{2}-19c}{\sqrt{19}}=-\frac{6\sqrt{19}}{\sqrt{19}}
Divide both sides by \sqrt{19}.
c^{2}+\left(-\frac{19}{\sqrt{19}}\right)c=-\frac{6\sqrt{19}}{\sqrt{19}}
Dividing by \sqrt{19} undoes the multiplication by \sqrt{19}.
c^{2}+\left(-\sqrt{19}\right)c=-\frac{6\sqrt{19}}{\sqrt{19}}
Divide -19 by \sqrt{19}.
c^{2}+\left(-\sqrt{19}\right)c=-6
Divide -6\sqrt{19} by \sqrt{19}.
c^{2}+\left(-\sqrt{19}\right)c+\left(-\frac{\sqrt{19}}{2}\right)^{2}=-6+\left(-\frac{\sqrt{19}}{2}\right)^{2}
Divide -\sqrt{19}, the coefficient of the x term, by 2 to get -\frac{\sqrt{19}}{2}. Then add the square of -\frac{\sqrt{19}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\left(-\sqrt{19}\right)c+\frac{19}{4}=-6+\frac{19}{4}
Square -\frac{\sqrt{19}}{2}.
c^{2}+\left(-\sqrt{19}\right)c+\frac{19}{4}=-\frac{5}{4}
Add -6 to \frac{19}{4}.
\left(c-\frac{\sqrt{19}}{2}\right)^{2}=-\frac{5}{4}
Factor c^{2}+\left(-\sqrt{19}\right)c+\frac{19}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{\sqrt{19}}{2}\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
c-\frac{\sqrt{19}}{2}=\frac{\sqrt{5}i}{2} c-\frac{\sqrt{19}}{2}=-\frac{\sqrt{5}i}{2}
Simplify.
c=\frac{\sqrt{19}+\sqrt{5}i}{2} c=\frac{-\sqrt{5}i+\sqrt{19}}{2}
Add \frac{\sqrt{19}}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}