Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{\left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right)}
Rationalize the denominator of \frac{6+5\sqrt{2}}{4+3\sqrt{2}} by multiplying numerator and denominator by 4-3\sqrt{2}.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{4^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(4+3\sqrt{2}\right)\left(4-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{16-\left(3\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{16-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{16-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{16-9\times 2}
The square of \sqrt{2} is 2.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{16-18}
Multiply 9 and 2 to get 18.
\frac{\left(6+5\sqrt{2}\right)\left(4-3\sqrt{2}\right)}{-2}
Subtract 18 from 16 to get -2.
\frac{24-18\sqrt{2}+20\sqrt{2}-15\left(\sqrt{2}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 6+5\sqrt{2} by each term of 4-3\sqrt{2}.
\frac{24+2\sqrt{2}-15\left(\sqrt{2}\right)^{2}}{-2}
Combine -18\sqrt{2} and 20\sqrt{2} to get 2\sqrt{2}.
\frac{24+2\sqrt{2}-15\times 2}{-2}
The square of \sqrt{2} is 2.
\frac{24+2\sqrt{2}-30}{-2}
Multiply -15 and 2 to get -30.
\frac{-6+2\sqrt{2}}{-2}
Subtract 30 from 24 to get -6.
3-\sqrt{2}
Divide each term of -6+2\sqrt{2} by -2 to get 3-\sqrt{2}.