Verify
true
Share
Copied to clipboard
\frac{6+3\sqrt{6}}{4-3\sqrt{6}}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Divide 4 by 4 to get 1.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{\left(4-3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Rationalize the denominator of \frac{6+3\sqrt{6}}{4-3\sqrt{6}} by multiplying numerator and denominator by 4+3\sqrt{6}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{4^{2}-\left(-3\sqrt{6}\right)^{2}}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Consider \left(4-3\sqrt{6}\right)\left(4+3\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-\left(-3\sqrt{6}\right)^{2}}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-\left(-3\right)^{2}\left(\sqrt{6}\right)^{2}}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Expand \left(-3\sqrt{6}\right)^{2}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-9\left(\sqrt{6}\right)^{2}}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Calculate -3 to the power of 2 and get 9.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-9\times 6}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
The square of \sqrt{6} is 6.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-54}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Multiply 9 and 6 to get 54.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{6+3\sqrt{6}}{4-3\sqrt{6}}\times 1
Subtract 54 from 16 to get -38.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{\left(4-3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}\times 1
Rationalize the denominator of \frac{6+3\sqrt{6}}{4-3\sqrt{6}} by multiplying numerator and denominator by 4+3\sqrt{6}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{4^{2}-\left(-3\sqrt{6}\right)^{2}}\times 1
Consider \left(4-3\sqrt{6}\right)\left(4+3\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-\left(-3\sqrt{6}\right)^{2}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-\left(-3\right)^{2}\left(\sqrt{6}\right)^{2}}\times 1
Expand \left(-3\sqrt{6}\right)^{2}.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-9\left(\sqrt{6}\right)^{2}}\times 1
Calculate -3 to the power of 2 and get 9.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-9\times 6}\times 1
The square of \sqrt{6} is 6.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{16-54}\times 1
Multiply 9 and 6 to get 54.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}\times 1
Subtract 54 from 16 to get -38.
\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
Express \frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}\times 1 as a single fraction.
\frac{24+18\sqrt{6}+12\sqrt{6}+9\left(\sqrt{6}\right)^{2}}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
Apply the distributive property by multiplying each term of 6+3\sqrt{6} by each term of 4+3\sqrt{6}.
\frac{24+30\sqrt{6}+9\left(\sqrt{6}\right)^{2}}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
Combine 18\sqrt{6} and 12\sqrt{6} to get 30\sqrt{6}.
\frac{24+30\sqrt{6}+9\times 6}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
The square of \sqrt{6} is 6.
\frac{24+30\sqrt{6}+54}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
Multiply 9 and 6 to get 54.
\frac{78+30\sqrt{6}}{-38}=\frac{\left(6+3\sqrt{6}\right)\left(4+3\sqrt{6}\right)}{-38}
Add 24 and 54 to get 78.
\frac{78+30\sqrt{6}}{-38}=\frac{24+18\sqrt{6}+12\sqrt{6}+9\left(\sqrt{6}\right)^{2}}{-38}
Apply the distributive property by multiplying each term of 6+3\sqrt{6} by each term of 4+3\sqrt{6}.
\frac{78+30\sqrt{6}}{-38}=\frac{24+30\sqrt{6}+9\left(\sqrt{6}\right)^{2}}{-38}
Combine 18\sqrt{6} and 12\sqrt{6} to get 30\sqrt{6}.
\frac{78+30\sqrt{6}}{-38}=\frac{24+30\sqrt{6}+9\times 6}{-38}
The square of \sqrt{6} is 6.
\frac{78+30\sqrt{6}}{-38}=\frac{24+30\sqrt{6}+54}{-38}
Multiply 9 and 6 to get 54.
\frac{78+30\sqrt{6}}{-38}=\frac{78+30\sqrt{6}}{-38}
Add 24 and 54 to get 78.
\frac{78+30\sqrt{6}}{-38}-\frac{78+30\sqrt{6}}{-38}=0
Subtract \frac{78+30\sqrt{6}}{-38} from both sides.
0=0
Combine \frac{78+30\sqrt{6}}{-38} and -\frac{78+30\sqrt{6}}{-38} to get 0.
\text{true}
Compare 0 and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}