Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(6+2x\right)\times \frac{9-x^{2}}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Divide \frac{6+2x}{x^{2}-5x+6} by \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}} by multiplying \frac{6+2x}{x^{2}-5x+6} by the reciprocal of \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}}.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Express \left(6+2x\right)\times \frac{9-x^{2}}{x^{2}} as a single fraction.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}}
Express \left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x} as a single fraction.
\frac{\left(6+2x\right)\left(9-x^{2}\right)\left(x^{2}-2x\right)}{x^{2}\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x} by multiplying \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by the reciprocal of \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}.
\frac{2x\left(x-3\right)\left(x-2\right)\left(-x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)x^{2}\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2\left(-x-3\right)}{x\left(x+3\right)}
Cancel out x\left(x-3\right)\left(x-2\right)\left(x+3\right) in both numerator and denominator.
\frac{-2\left(x+3\right)}{x\left(x+3\right)}
Extract the negative sign in -3-x.
\frac{-2}{x}
Cancel out x+3 in both numerator and denominator.
\frac{\left(6+2x\right)\times \frac{9-x^{2}}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Divide \frac{6+2x}{x^{2}-5x+6} by \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}} by multiplying \frac{6+2x}{x^{2}-5x+6} by the reciprocal of \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}}.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Express \left(6+2x\right)\times \frac{9-x^{2}}{x^{2}} as a single fraction.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}}
Express \left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x} as a single fraction.
\frac{\left(6+2x\right)\left(9-x^{2}\right)\left(x^{2}-2x\right)}{x^{2}\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x} by multiplying \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by the reciprocal of \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}.
\frac{2x\left(x-3\right)\left(x-2\right)\left(-x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)x^{2}\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2\left(-x-3\right)}{x\left(x+3\right)}
Cancel out x\left(x-3\right)\left(x-2\right)\left(x+3\right) in both numerator and denominator.
\frac{-2\left(x+3\right)}{x\left(x+3\right)}
Extract the negative sign in -3-x.
\frac{-2}{x}
Cancel out x+3 in both numerator and denominator.