Evaluate
-\frac{2}{x}
Expand
-\frac{2}{x}
Graph
Share
Copied to clipboard
\frac{\left(6+2x\right)\times \frac{9-x^{2}}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Divide \frac{6+2x}{x^{2}-5x+6} by \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}} by multiplying \frac{6+2x}{x^{2}-5x+6} by the reciprocal of \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}}.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Express \left(6+2x\right)\times \frac{9-x^{2}}{x^{2}} as a single fraction.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}}
Express \left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x} as a single fraction.
\frac{\left(6+2x\right)\left(9-x^{2}\right)\left(x^{2}-2x\right)}{x^{2}\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x} by multiplying \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by the reciprocal of \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}.
\frac{2x\left(x-3\right)\left(x-2\right)\left(-x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)x^{2}\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2\left(-x-3\right)}{x\left(x+3\right)}
Cancel out x\left(x-3\right)\left(x-2\right)\left(x+3\right) in both numerator and denominator.
\frac{-2\left(x+3\right)}{x\left(x+3\right)}
Extract the negative sign in -3-x.
\frac{-2}{x}
Cancel out x+3 in both numerator and denominator.
\frac{\left(6+2x\right)\times \frac{9-x^{2}}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Divide \frac{6+2x}{x^{2}-5x+6} by \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}} by multiplying \frac{6+2x}{x^{2}-5x+6} by the reciprocal of \frac{\frac{x^{2}+6x+9}{x^{2}-2x}}{\frac{9-x^{2}}{x^{2}}}.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x}}
Express \left(6+2x\right)\times \frac{9-x^{2}}{x^{2}} as a single fraction.
\frac{\frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}}}{\frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}}
Express \left(x^{2}-5x+6\right)\times \frac{x^{2}+6x+9}{x^{2}-2x} as a single fraction.
\frac{\left(6+2x\right)\left(9-x^{2}\right)\left(x^{2}-2x\right)}{x^{2}\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x} by multiplying \frac{\left(6+2x\right)\left(9-x^{2}\right)}{x^{2}} by the reciprocal of \frac{\left(x^{2}-5x+6\right)\left(x^{2}+6x+9\right)}{x^{2}-2x}.
\frac{2x\left(x-3\right)\left(x-2\right)\left(-x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)x^{2}\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2\left(-x-3\right)}{x\left(x+3\right)}
Cancel out x\left(x-3\right)\left(x-2\right)\left(x+3\right) in both numerator and denominator.
\frac{-2\left(x+3\right)}{x\left(x+3\right)}
Extract the negative sign in -3-x.
\frac{-2}{x}
Cancel out x+3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}