Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)}-\frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8a-3 and 9a+4 is \left(8a-3\right)\left(9a+4\right). Multiply \frac{6+2a}{8a-3} times \frac{9a+4}{9a+4}. Multiply \frac{4a+8}{9a+4} times \frac{8a-3}{8a-3}.
\frac{\left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
Since \frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)} and \frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{54a+24+18a^{2}+8a-32a^{2}+12a-64a+24}{\left(8a-3\right)\left(9a+4\right)}
Do the multiplications in \left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right).
\frac{10a+48-14a^{2}}{\left(8a-3\right)\left(9a+4\right)}
Combine like terms in 54a+24+18a^{2}+8a-32a^{2}+12a-64a+24.
\frac{10a+48-14a^{2}}{72a^{2}+5a-12}
Expand \left(8a-3\right)\left(9a+4\right).
\frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)}-\frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8a-3 and 9a+4 is \left(8a-3\right)\left(9a+4\right). Multiply \frac{6+2a}{8a-3} times \frac{9a+4}{9a+4}. Multiply \frac{4a+8}{9a+4} times \frac{8a-3}{8a-3}.
\frac{\left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
Since \frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)} and \frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{54a+24+18a^{2}+8a-32a^{2}+12a-64a+24}{\left(8a-3\right)\left(9a+4\right)}
Do the multiplications in \left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right).
\frac{10a+48-14a^{2}}{\left(8a-3\right)\left(9a+4\right)}
Combine like terms in 54a+24+18a^{2}+8a-32a^{2}+12a-64a+24.
\frac{10a+48-14a^{2}}{72a^{2}+5a-12}
Expand \left(8a-3\right)\left(9a+4\right).