Evaluate
-\frac{2\left(7a^{2}-5a-24\right)}{\left(8a-3\right)\left(9a+4\right)}
Expand
-\frac{2\left(7a^{2}-5a-24\right)}{\left(8a-3\right)\left(9a+4\right)}
Quiz
Polynomial
5 problems similar to:
\frac { 6 + 2 a } { 8 a - 3 } - \frac { 4 a + 8 } { 9 a + 4 } =
Share
Copied to clipboard
\frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)}-\frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8a-3 and 9a+4 is \left(8a-3\right)\left(9a+4\right). Multiply \frac{6+2a}{8a-3} times \frac{9a+4}{9a+4}. Multiply \frac{4a+8}{9a+4} times \frac{8a-3}{8a-3}.
\frac{\left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
Since \frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)} and \frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{54a+24+18a^{2}+8a-32a^{2}+12a-64a+24}{\left(8a-3\right)\left(9a+4\right)}
Do the multiplications in \left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right).
\frac{10a+48-14a^{2}}{\left(8a-3\right)\left(9a+4\right)}
Combine like terms in 54a+24+18a^{2}+8a-32a^{2}+12a-64a+24.
\frac{10a+48-14a^{2}}{72a^{2}+5a-12}
Expand \left(8a-3\right)\left(9a+4\right).
\frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)}-\frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8a-3 and 9a+4 is \left(8a-3\right)\left(9a+4\right). Multiply \frac{6+2a}{8a-3} times \frac{9a+4}{9a+4}. Multiply \frac{4a+8}{9a+4} times \frac{8a-3}{8a-3}.
\frac{\left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)}
Since \frac{\left(6+2a\right)\left(9a+4\right)}{\left(8a-3\right)\left(9a+4\right)} and \frac{\left(4a+8\right)\left(8a-3\right)}{\left(8a-3\right)\left(9a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{54a+24+18a^{2}+8a-32a^{2}+12a-64a+24}{\left(8a-3\right)\left(9a+4\right)}
Do the multiplications in \left(6+2a\right)\left(9a+4\right)-\left(4a+8\right)\left(8a-3\right).
\frac{10a+48-14a^{2}}{\left(8a-3\right)\left(9a+4\right)}
Combine like terms in 54a+24+18a^{2}+8a-32a^{2}+12a-64a+24.
\frac{10a+48-14a^{2}}{72a^{2}+5a-12}
Expand \left(8a-3\right)\left(9a+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}