Solve for x
x\in (-2,\frac{15}{7}]
Graph
Share
Copied to clipboard
\frac{6+9-6x+x^{2}}{x+2}-1\geq \frac{2-x^{2}}{-x-2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
\frac{15-6x+x^{2}}{x+2}-1\geq \frac{2-x^{2}}{-x-2}
Add 6 and 9 to get 15.
\frac{15-6x+x^{2}}{x+2}-\frac{x+2}{x+2}\geq \frac{2-x^{2}}{-x-2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+2}{x+2}.
\frac{15-6x+x^{2}-\left(x+2\right)}{x+2}\geq \frac{2-x^{2}}{-x-2}
Since \frac{15-6x+x^{2}}{x+2} and \frac{x+2}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{15-6x+x^{2}-x-2}{x+2}\geq \frac{2-x^{2}}{-x-2}
Do the multiplications in 15-6x+x^{2}-\left(x+2\right).
\frac{13-7x+x^{2}}{x+2}\geq \frac{2-x^{2}}{-x-2}
Combine like terms in 15-6x+x^{2}-x-2.
\frac{13-7x+x^{2}}{x+2}-\frac{2-x^{2}}{-x-2}\geq 0
Subtract \frac{2-x^{2}}{-x-2} from both sides.
\frac{13-7x+x^{2}}{x+2}-\frac{-\left(2-x^{2}\right)}{x+2}\geq 0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and -x-2 is x+2. Multiply \frac{2-x^{2}}{-x-2} times \frac{-1}{-1}.
\frac{13-7x+x^{2}-\left(-\left(2-x^{2}\right)\right)}{x+2}\geq 0
Since \frac{13-7x+x^{2}}{x+2} and \frac{-\left(2-x^{2}\right)}{x+2} have the same denominator, subtract them by subtracting their numerators.
\frac{13-7x+x^{2}+2-x^{2}}{x+2}\geq 0
Do the multiplications in 13-7x+x^{2}-\left(-\left(2-x^{2}\right)\right).
\frac{15-7x}{x+2}\geq 0
Combine like terms in 13-7x+x^{2}+2-x^{2}.
15-7x\leq 0 x+2<0
For the quotient to be ≥0, 15-7x and x+2 have to be both ≤0 or both ≥0, and x+2 cannot be zero. Consider the case when 15-7x\leq 0 and x+2 is negative.
x\in \emptyset
This is false for any x.
15-7x\geq 0 x+2>0
Consider the case when 15-7x\geq 0 and x+2 is positive.
x\in (-2,\frac{15}{7}]
The solution satisfying both inequalities is x\in \left(-2,\frac{15}{7}\right].
x\in (-2,\frac{15}{7}]
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}