Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Rationalize the denominator of \frac{6+3\sqrt{3}}{4-\sqrt{3}} by multiplying numerator and denominator by 4+\sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
Square 4. Square \sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
Subtract 3 from 16 to get 13.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Apply the distributive property by multiplying each term of 6+3\sqrt{3} by each term of 4+\sqrt{3}.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Combine 6\sqrt{3} and 12\sqrt{3} to get 18\sqrt{3}.
\frac{24+18\sqrt{3}+3\times 3}{13}
The square of \sqrt{3} is 3.
\frac{24+18\sqrt{3}+9}{13}
Multiply 3 and 3 to get 9.
\frac{33+18\sqrt{3}}{13}
Add 24 and 9 to get 33.