Evaluate
\frac{18\sqrt{3}+33}{13}\approx 4.936685734
Share
Copied to clipboard
\frac{6+3\sqrt{3}}{4-\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Rationalize the denominator of \frac{6+3\sqrt{3}}{4-\sqrt{3}} by multiplying numerator and denominator by 4+\sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{16-3}
Square 4. Square \sqrt{3}.
\frac{\left(6+3\sqrt{3}\right)\left(4+\sqrt{3}\right)}{13}
Subtract 3 from 16 to get 13.
\frac{24+6\sqrt{3}+12\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Apply the distributive property by multiplying each term of 6+3\sqrt{3} by each term of 4+\sqrt{3}.
\frac{24+18\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{13}
Combine 6\sqrt{3} and 12\sqrt{3} to get 18\sqrt{3}.
\frac{24+18\sqrt{3}+3\times 3}{13}
The square of \sqrt{3} is 3.
\frac{24+18\sqrt{3}+9}{13}
Multiply 3 and 3 to get 9.
\frac{33+18\sqrt{3}}{13}
Add 24 and 9 to get 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}