Solve for x
x = \frac{1254}{25} = 50\frac{4}{25} = 50.16
Graph
Share
Copied to clipboard
\frac{6+\frac{1}{5}x}{100+\frac{20}{100}}=\frac{16}{100}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6+\frac{1}{5}x}{100+\frac{1}{5}}=\frac{16}{100}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{6+\frac{1}{5}x}{\frac{500}{5}+\frac{1}{5}}=\frac{16}{100}
Convert 100 to fraction \frac{500}{5}.
\frac{6+\frac{1}{5}x}{\frac{500+1}{5}}=\frac{16}{100}
Since \frac{500}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{16}{100}
Add 500 and 1 to get 501.
\frac{6+\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Reduce the fraction \frac{16}{100} to lowest terms by extracting and canceling out 4.
\frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Divide each term of 6+\frac{1}{5}x by \frac{501}{5} to get \frac{6}{\frac{501}{5}}+\frac{\frac{1}{5}x}{\frac{501}{5}}.
6\times \frac{5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Divide 6 by \frac{501}{5} by multiplying 6 by the reciprocal of \frac{501}{5}.
\frac{6\times 5}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Express 6\times \frac{5}{501} as a single fraction.
\frac{30}{501}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Multiply 6 and 5 to get 30.
\frac{10}{167}+\frac{\frac{1}{5}x}{\frac{501}{5}}=\frac{4}{25}
Reduce the fraction \frac{30}{501} to lowest terms by extracting and canceling out 3.
\frac{10}{167}+\frac{1}{501}x=\frac{4}{25}
Divide \frac{1}{5}x by \frac{501}{5} to get \frac{1}{501}x.
\frac{1}{501}x=\frac{4}{25}-\frac{10}{167}
Subtract \frac{10}{167} from both sides.
\frac{1}{501}x=\frac{668}{4175}-\frac{250}{4175}
Least common multiple of 25 and 167 is 4175. Convert \frac{4}{25} and \frac{10}{167} to fractions with denominator 4175.
\frac{1}{501}x=\frac{668-250}{4175}
Since \frac{668}{4175} and \frac{250}{4175} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{501}x=\frac{418}{4175}
Subtract 250 from 668 to get 418.
x=\frac{418}{4175}\times 501
Multiply both sides by 501, the reciprocal of \frac{1}{501}.
x=\frac{418\times 501}{4175}
Express \frac{418}{4175}\times 501 as a single fraction.
x=\frac{209418}{4175}
Multiply 418 and 501 to get 209418.
x=\frac{1254}{25}
Reduce the fraction \frac{209418}{4175} to lowest terms by extracting and canceling out 167.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}