Evaluate
\frac{59299}{16}=3706.1875
Factor
\frac{19 \cdot 3121}{2 ^ {4}} = 3706\frac{3}{16} = 3706.1875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)59299}\\\end{array}
Use the 1^{st} digit 5 from dividend 59299
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)59299}\\\end{array}
Since 5 is less than 16, use the next digit 9 from dividend 59299 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)59299}\\\end{array}
Use the 2^{nd} digit 9 from dividend 59299
\begin{array}{l}\phantom{16)}03\phantom{4}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}11\\\end{array}
Find closest multiple of 16 to 59. We see that 3 \times 16 = 48 is the nearest. Now subtract 48 from 59 to get reminder 11. Add 3 to quotient.
\begin{array}{l}\phantom{16)}03\phantom{5}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\end{array}
Use the 3^{rd} digit 2 from dividend 59299
\begin{array}{l}\phantom{16)}037\phantom{6}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 112. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 112 to get reminder 0. Add 7 to quotient.
\begin{array}{l}\phantom{16)}037\phantom{7}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)999}9\\\end{array}
Use the 4^{th} digit 9 from dividend 59299
\begin{array}{l}\phantom{16)}0370\phantom{8}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)999}9\\\end{array}
Since 9 is less than 16, use the next digit 9 from dividend 59299 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0370\phantom{9}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)999}99\\\end{array}
Use the 5^{th} digit 9 from dividend 59299
\begin{array}{l}\phantom{16)}03706\phantom{10}\\16\overline{)59299}\\\phantom{16)}\underline{\phantom{}48\phantom{999}}\\\phantom{16)}112\\\phantom{16)}\underline{\phantom{}112\phantom{99}}\\\phantom{16)999}99\\\phantom{16)}\underline{\phantom{999}96\phantom{}}\\\phantom{16)9999}3\\\end{array}
Find closest multiple of 16 to 99. We see that 6 \times 16 = 96 is the nearest. Now subtract 96 from 99 to get reminder 3. Add 6 to quotient.
\text{Quotient: }3706 \text{Reminder: }3
Since 3 is less than 16, stop the division. The reminder is 3. The topmost line 03706 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3706.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}