Evaluate
\frac{59}{42}\approx 1.404761905
Factor
\frac{59}{2 \cdot 3 \cdot 7} = 1\frac{17}{42} = 1.4047619047619047
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)59}\\\end{array}
Use the 1^{st} digit 5 from dividend 59
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)59}\\\end{array}
Since 5 is less than 42, use the next digit 9 from dividend 59 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)59}\\\end{array}
Use the 2^{nd} digit 9 from dividend 59
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)59}\\\phantom{42)}\underline{\phantom{}42\phantom{}}\\\phantom{42)}17\\\end{array}
Find closest multiple of 42 to 59. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 59 to get reminder 17. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }17
Since 17 is less than 42, stop the division. The reminder is 17. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}