Evaluate
\frac{15}{8}=1.875
Factor
\frac{3 \cdot 5}{2 ^ {3}} = 1\frac{7}{8} = 1.875
Share
Copied to clipboard
\begin{array}{l}\phantom{3136)}\phantom{1}\\3136\overline{)5880}\\\end{array}
Use the 1^{st} digit 5 from dividend 5880
\begin{array}{l}\phantom{3136)}0\phantom{2}\\3136\overline{)5880}\\\end{array}
Since 5 is less than 3136, use the next digit 8 from dividend 5880 and add 0 to the quotient
\begin{array}{l}\phantom{3136)}0\phantom{3}\\3136\overline{)5880}\\\end{array}
Use the 2^{nd} digit 8 from dividend 5880
\begin{array}{l}\phantom{3136)}00\phantom{4}\\3136\overline{)5880}\\\end{array}
Since 58 is less than 3136, use the next digit 8 from dividend 5880 and add 0 to the quotient
\begin{array}{l}\phantom{3136)}00\phantom{5}\\3136\overline{)5880}\\\end{array}
Use the 3^{rd} digit 8 from dividend 5880
\begin{array}{l}\phantom{3136)}000\phantom{6}\\3136\overline{)5880}\\\end{array}
Since 588 is less than 3136, use the next digit 0 from dividend 5880 and add 0 to the quotient
\begin{array}{l}\phantom{3136)}000\phantom{7}\\3136\overline{)5880}\\\end{array}
Use the 4^{th} digit 0 from dividend 5880
\begin{array}{l}\phantom{3136)}0001\phantom{8}\\3136\overline{)5880}\\\phantom{3136)}\underline{\phantom{}3136\phantom{}}\\\phantom{3136)}2744\\\end{array}
Find closest multiple of 3136 to 5880. We see that 1 \times 3136 = 3136 is the nearest. Now subtract 3136 from 5880 to get reminder 2744. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2744
Since 2744 is less than 3136, stop the division. The reminder is 2744. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}