Evaluate
\frac{5875489}{1500000}\approx 3.916992667
Factor
\frac{17 \cdot 37 \cdot 9341}{2 ^ {5} \cdot 3 \cdot 5 ^ {6}} = 3\frac{1375489}{1500000} = 3.916992666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15000000)}\phantom{1}\\15000000\overline{)58754890}\\\end{array}
Use the 1^{st} digit 5 from dividend 58754890
\begin{array}{l}\phantom{15000000)}0\phantom{2}\\15000000\overline{)58754890}\\\end{array}
Since 5 is less than 15000000, use the next digit 8 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}0\phantom{3}\\15000000\overline{)58754890}\\\end{array}
Use the 2^{nd} digit 8 from dividend 58754890
\begin{array}{l}\phantom{15000000)}00\phantom{4}\\15000000\overline{)58754890}\\\end{array}
Since 58 is less than 15000000, use the next digit 7 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}00\phantom{5}\\15000000\overline{)58754890}\\\end{array}
Use the 3^{rd} digit 7 from dividend 58754890
\begin{array}{l}\phantom{15000000)}000\phantom{6}\\15000000\overline{)58754890}\\\end{array}
Since 587 is less than 15000000, use the next digit 5 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}000\phantom{7}\\15000000\overline{)58754890}\\\end{array}
Use the 4^{th} digit 5 from dividend 58754890
\begin{array}{l}\phantom{15000000)}0000\phantom{8}\\15000000\overline{)58754890}\\\end{array}
Since 5875 is less than 15000000, use the next digit 4 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}0000\phantom{9}\\15000000\overline{)58754890}\\\end{array}
Use the 5^{th} digit 4 from dividend 58754890
\begin{array}{l}\phantom{15000000)}00000\phantom{10}\\15000000\overline{)58754890}\\\end{array}
Since 58754 is less than 15000000, use the next digit 8 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}00000\phantom{11}\\15000000\overline{)58754890}\\\end{array}
Use the 6^{th} digit 8 from dividend 58754890
\begin{array}{l}\phantom{15000000)}000000\phantom{12}\\15000000\overline{)58754890}\\\end{array}
Since 587548 is less than 15000000, use the next digit 9 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}000000\phantom{13}\\15000000\overline{)58754890}\\\end{array}
Use the 7^{th} digit 9 from dividend 58754890
\begin{array}{l}\phantom{15000000)}0000000\phantom{14}\\15000000\overline{)58754890}\\\end{array}
Since 5875489 is less than 15000000, use the next digit 0 from dividend 58754890 and add 0 to the quotient
\begin{array}{l}\phantom{15000000)}0000000\phantom{15}\\15000000\overline{)58754890}\\\end{array}
Use the 8^{th} digit 0 from dividend 58754890
\begin{array}{l}\phantom{15000000)}00000003\phantom{16}\\15000000\overline{)58754890}\\\phantom{15000000)}\underline{\phantom{}45000000\phantom{}}\\\phantom{15000000)}13754890\\\end{array}
Find closest multiple of 15000000 to 58754890. We see that 3 \times 15000000 = 45000000 is the nearest. Now subtract 45000000 from 58754890 to get reminder 13754890. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }13754890
Since 13754890 is less than 15000000, stop the division. The reminder is 13754890. The topmost line 00000003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}