Evaluate
\frac{73}{5}=14.6
Factor
\frac{73}{5} = 14\frac{3}{5} = 14.6
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)584}\\\end{array}
Use the 1^{st} digit 5 from dividend 584
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)584}\\\end{array}
Since 5 is less than 40, use the next digit 8 from dividend 584 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)584}\\\end{array}
Use the 2^{nd} digit 8 from dividend 584
\begin{array}{l}\phantom{40)}01\phantom{4}\\40\overline{)584}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}18\\\end{array}
Find closest multiple of 40 to 58. We see that 1 \times 40 = 40 is the nearest. Now subtract 40 from 58 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{40)}01\phantom{5}\\40\overline{)584}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}184\\\end{array}
Use the 3^{rd} digit 4 from dividend 584
\begin{array}{l}\phantom{40)}014\phantom{6}\\40\overline{)584}\\\phantom{40)}\underline{\phantom{}40\phantom{9}}\\\phantom{40)}184\\\phantom{40)}\underline{\phantom{}160\phantom{}}\\\phantom{40)9}24\\\end{array}
Find closest multiple of 40 to 184. We see that 4 \times 40 = 160 is the nearest. Now subtract 160 from 184 to get reminder 24. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }24
Since 24 is less than 40, stop the division. The reminder is 24. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}